NVIDIA GeForce RTX 2080

NVIDIA GeForce RTX 2080

À propos du GPU

La NVIDIA GeForce RTX 2080 est une puissante GPU qui offre des performances exceptionnelles pour les jeux et d'autres tâches intensives en graphisme. Avec une vitesse d'horloge de base de 1515MHz et une vitesse d'accélération de 1710MHz, cette GPU est capable de gérer les derniers jeux et applications avec facilité. Les 8 Go de mémoire GDDR6 et une vitesse d'horloge de la mémoire de 1750MHz garantissent une bande passante mémoire plus que suffisante pour les tâches exigeantes, résultant en des expériences de jeu fluides et immersives. L'une des caractéristiques les plus remarquables de la RTX 2080 est ses impressionnantes capacités de rendu 3D. Avec 2944 unités d'ombrage et 4 Mo de cache L2, cette GPU peut gérer les effets visuels complexes et l'éclairage réaliste avec facilité. La performance théorique de 10,07 TFLOPS en fait l'une des GPUs les plus rapides du marché, et le score 3DMark Time Spy de 11003 consolide davantage sa position en tant que carte graphique de haut niveau. En termes de performances de jeu réelles, la RTX 2080 brille vraiment. Avec des taux de rafraîchissement de 158 ips dans Battlefield 5, 67 ips dans Cyberpunk 2077 et 127 ips dans Shadow of the Tomb Raider en résolution 1080p, cette GPU offre une expérience de jeu incroyablement fluide et réactive. De plus, avec une TDP de 215W, la RTX 2080 parvient à offrir toutes ces performances sans consommer une quantité excessive d'énergie ou générer une chaleur excessive. Dans l'ensemble, la NVIDIA GeForce RTX 2080 est un excellent choix pour quiconque recherche une GPU haute performance capable de gérer les derniers jeux et applications avec facilité. Ses spécifications impressionnantes et ses performances réelles en font un concurrent de haut niveau sur le marché des cartes graphiques haut de gamme.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
September 2018
Nom du modèle
GeForce RTX 2080
Génération
GeForce 20
Horloge de base
1515MHz
Horloge Boost
1710MHz
Interface de bus
PCIe 3.0 x16
Transistors
13,600 million
Cœurs RT
46
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
368
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
184
Fonderie
TSMC
Taille de processus
12 nm
Architecture
Turing

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
1750MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
448.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
109.4 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
314.6 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
20.14 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
314.6 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
10.271 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
46
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2944
Cache L1
64 KB (per SM)
Cache L2
4MB
TDP
215W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Connecteurs d'alimentation
1x 6-pin + 1x 8-pin
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
64
Alimentation suggérée
550W

Benchmarks

Shadow of the Tomb Raider 2160p
Score
45 fps
Shadow of the Tomb Raider 1440p
Score
83 fps
Shadow of the Tomb Raider 1080p
Score
124 fps
Cyberpunk 2077 2160p
Score
40 fps
Cyberpunk 2077 1440p
Score
46 fps
Cyberpunk 2077 1080p
Score
68 fps
Battlefield 5 2160p
Score
64 fps
Battlefield 5 1440p
Score
116 fps
Battlefield 5 1080p
Score
161 fps
GTA 5 2160p
Score
108 fps
GTA 5 1440p
Score
110 fps
FP32 (flottant)
Score
10.271 TFLOPS
3DMark Time Spy
Score
11223
Vulkan
Score
101318
OpenCL
Score
112426

Comparé aux autres GPU

Shadow of the Tomb Raider 2160p / fps
193 +328.9%
69 +53.3%
34 -24.4%
24 -46.7%
Shadow of the Tomb Raider 1440p / fps
219 +163.9%
122 +47%
67 -19.3%
46 -44.6%
Shadow of the Tomb Raider 1080p / fps
295 +137.9%
169 +36.3%
71 -42.7%
Cyberpunk 2077 2160p / fps
52 +30%
Cyberpunk 2077 1440p / fps
81 +76.1%
19 -58.7%
Cyberpunk 2077 1080p / fps
127 +86.8%
21 -69.1%
Battlefield 5 2160p / fps
124 +93.8%
53 -17.2%
43 -32.8%
Battlefield 5 1440p / fps
149 +28.4%
Battlefield 5 1080p / fps
204 +26.7%
192 +19.3%
132 -18%
112 -30.4%
GTA 5 2160p / fps
174 +61.1%
GTA 5 1440p / fps
191 +73.6%
73 -33.6%
FP32 (flottant) / TFLOPS
10.965 +6.8%
10.649 +3.7%
9.609 -6.4%
9.121 -11.2%
3DMark Time Spy
28889 +157.4%
15987 +42.4%
9089 -19%
7045 -37.2%
Vulkan
254749 +151.4%
L4
120950 +19.4%
54373 -46.3%
30994 -69.4%
OpenCL
362331 +222.3%
149268 +32.8%
66428 -40.9%
46137 -59%