AMD Radeon RX 6800S

AMD Radeon RX 6800S

À propos du GPU

Le AMD Radeon RX 6800S est un GPU puissant et efficace qui offre d'excellentes performances pour les jeux et les applications professionnelles. Avec une horloge de base de 1800 MHz et une horloge de boost de 2100 MHz, ce GPU offre des performances fluides et constantes même dans les tâches les plus exigeantes. Les 8 Go de mémoire GDDR6 et une horloge mémoire de 2000 MHz garantissent des performances rapides et réactives, tandis que les 2048 unités de ombrage et 2 Mo de mémoire cache L2 contribuent à des capacités de rendu impressionnantes. L'un des points forts du RX 6800S est son TDP de 100W, ce qui en fait une option efficace pour ceux qui cherchent à minimiser la consommation d'énergie sans sacrifier les performances. Malgré ses modestes besoins en énergie, le RX 6800S parvient toujours à offrir une performance théorique de 8,602 TFLOPS, le rendant adapté aux jeux haut de gamme et aux tâches de création de contenu. Dans les tests de référence, le RX 6800S se comporte admirablement, marquant un impressionnant 8911 dans 3DMark Time Spy. Cela indique sa capacité à gérer les titres de jeux modernes à des résolutions et des taux de rafraîchissement élevés, ainsi que des tâches de rendu 3D complexes et calculs. En fin de compte, l'AMD Radeon RX 6800S est un GPU polyvalent qui offre des performances solides, une consommation d'énergie efficace et un prix compétitif. Que vous soyez un joueur, un créateur de contenu ou un utilisateur professionnel, le RX 6800S est une option attrayante qui offre une excellente valeur pour ses capacités.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
January 2022
Nom du modèle
Radeon RX 6800S
Génération
Mobility Radeon
Horloge de base
1800MHz
Horloge Boost
2100MHz
Interface de bus
PCIe 4.0 x8

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
2000MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
256.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
134.4 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
268.8 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
17.20 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
537.6 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
8.774 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2048
Cache L1
128 KB per Array
Cache L2
2MB
TDP
100W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.1

Benchmarks

FP32 (flottant)
Score
8.774 TFLOPS
3DMark Time Spy
Score
9089
Blender
Score
1064
Vulkan
Score
79806
OpenCL
Score
72374

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
8.832 +0.7%
8.781 +0.1%
8.774 -0%
8.766 -0.1%
3DMark Time Spy
9097 +0.1%
9090 +0%
8882 -2.3%
Blender
1154 +8.5%
1051 -1.2%
1049 -1.4%
Vulkan
82376 +3.2%
81133 +1.7%
79612 -0.2%
79201 -0.8%
OpenCL
74179 +2.5%
72786 +0.6%
71022 -1.9%
69550 -3.9%