AMD Radeon Pro 5700 XT
À propos du GPU
La carte graphique AMD Radeon Pro 5700 XT est une GPU de bureau haut de gamme qui offre des performances impressionnantes et une gamme de fonctionnalités qui en font un excellent choix pour une utilisation professionnelle et le jeu.
Avec une vitesse d'horloge de base de 1243 MHz et une vitesse d'horloge boostée de 1499 MHz, la 5700 XT offre des performances rapides et fiables pour une gamme de tâches. Ses 16 Go de mémoire GDDR6 et une vitesse d'horloge de la mémoire de 1500 MHz garantissent également qu'elle peut gérer même les charges de travail et les jeux les plus exigeants en toute facilité.
Les 2560 unités de shaders et les 4 Mo de mémoire cache L2 contribuent en outre à la capacité de la GPU à gérer des tâches graphiques complexes, en en faisant un excellent choix pour les professionnels qui travaillent avec de grands ensembles de données et des images haute résolution.
L'une des caractéristiques remarquables de la Radeon Pro 5700 XT est son efficacité énergétique, avec une TDP de seulement 130 W. Cela signifie que la GPU peut offrir des performances élevées sans consommer des quantités excessives d'énergie, en en faisant un excellent choix pour les utilisateurs qui souhaitent minimiser leur impact environnemental et leurs coûts en énergie.
En fin de compte, l'AMD Radeon Pro 5700 XT offre d'excellentes performances, une efficacité énergétique et une gamme de fonctionnalités qui en font un excellent choix pour les professionnels et les joueurs à la recherche d'une GPU de bureau haut de gamme. Que vous travailliez avec de grands ensembles de données, créiez des modèles 3D complexes ou jouiez aux derniers jeux, la 5700 XT a la puissance et les fonctionnalités pour tout gérer.
Basique
Nom de l'étiquette
AMD
Plate-forme
Desktop
Date de lancement
August 2020
Nom du modèle
Radeon Pro 5700 XT
Génération
Radeon Pro Mac
Horloge de base
1243MHz
Horloge Boost
1499MHz
Interface de bus
PCIe 4.0 x16
Transistors
10,300 million
Unités de calcul
40
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
160
Fonderie
TSMC
Taille de processus
7 nm
Architecture
RDNA 1.0
Spécifications de la mémoire
Taille de Mémoire
16GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
384.0 GB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
95.94 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
239.8 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
15.35 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
479.7 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
7.521
TFLOPS
Divers
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2560
Cache L2
4MB
TDP
130W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_1)
Connecteurs d'alimentation
None
Modèle de shader
6.5
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
64
Alimentation suggérée
300W
Benchmarks
FP32 (flottant)
Score
7.521
TFLOPS
Blender
Score
722
Vulkan
Score
49804
OpenCL
Score
59644
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS
Blender
Vulkan
OpenCL