AMD Radeon RX 5700M

AMD Radeon RX 5700M

À propos du GPU

Le AMD Radeon RX 5700M est un GPU mobile haute performance qui apporte une grande puissance et des capacités aux ordinateurs portables. Avec une vitesse d'horloge de base de 1465 MHz et une vitesse d'horloge de boost de 1720 MHz, le RX 5700M est capable de fournir des performances graphiques rapides et fluides pour une large gamme de jeux et d'applications professionnelles. Une des caractéristiques notables de la Radeon RX 5700M est ses 8 Go de mémoire GDDR6, qui fonctionne à une vitesse d'horloge mémoire de 1500 MHz. Cette mémoire haute vitesse permet au GPU de gérer de grandes textures et des scènes complexes avec facilité, offrant des expériences de jeu fluides et immersives. Avec 2304 unités de lissage et 8 Mo de cache L2, le RX 5700M est capable de gérer des charges de travail graphiques exigeantes avec facilité. Son TDP de 180W garantit qu'il délivre une puissance ample pour des performances soutenues sans surchauffe ni throttling. La performance théorique du RX 5700M est impressionnante avec 7,926 TFLOPS, ce qui le rend parfait pour gérer les jeux AAA modernes et les applications 3D professionnelles avec facilité. Son architecture et son efficacité en font un excellent choix pour les joueurs et les créateurs de contenu qui exigent des performances élevées de leurs ordinateurs portables. En conclusion, le AMD Radeon RX 5700M est un GPU mobile puissant qui offre des performances impressionnantes, des fonctionnalités avancées et prend en charge les dernières technologies graphiques, ce qui en fait un excellent choix pour les joueurs et les professionnels.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
March 2020
Nom du modèle
Radeon RX 5700M
Génération
Mobility Radeon
Horloge de base
1465MHz
Horloge Boost
1720MHz
Interface de bus
PCIe 4.0 x16
Transistors
10,300 million
Unités de calcul
36
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
144
Fonderie
TSMC
Taille de processus
7 nm
Architecture
RDNA 1.0

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
384.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
110.1 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
247.7 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
15.85 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
495.4 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
8.085 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2304
Cache L2
8MB
TDP
180W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_1)
Connecteurs d'alimentation
1x 6-pin + 1x 8-pin
Modèle de shader
6.5
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
64

Benchmarks

FP32 (flottant)
Score
8.085 TFLOPS
Blender
Score
354

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
8.749 +8.2%
8.445 +4.5%
7.521 -7%
7.316 -9.5%
Blender
1436 +305.6%
62 -82.5%