NVIDIA GeForce MX570 A

NVIDIA GeForce MX570 A

À propos du GPU

Le NVIDIA GeForce MX570 A est un GPU mobile qui apporte des performances élevées et une efficacité aux ordinateurs portables et aux notebooks. Avec une horloge de base de 832MHz et une horloge de boost de 1155MHz, ce GPU offre un gameplay fluide et réactif pour une large gamme de titres de jeux modernes et d'applications de productivité. Équipé de 2 Go de mémoire GDDR6 et d'une horloge mémoire de 1500MHz, le MX570 A offre des performances rapides et fiables pour le multitâche, la création de contenu et les jeux. Ses 2048 unités d'ombrage et 2 Mo de cache L2 garantissent que les tâches graphiques exigeantes sont traitées facilement, offrant des visuels époustouflants et des expériences utilisateur fluides. L'une des caractéristiques marquantes du MX570 A est son faible TDP de 25W, ce qui en fait un choix économe en énergie pour les appareils portables sans sacrifier les performances. Cela permet une autonomie plus longue de la batterie et un fonctionnement plus frais, même lors de sessions de jeu intenses. Avec une performance théorique de 4,731 TFLOPS, le MX570 A offre une puissance de traitement graphique impressionnante qui peut gérer facilement les jeux haute résolution, la création de contenu et le montage vidéo. Que vous soyez un joueur occasionnel, un créateur de contenu ou un professionnel en déplacement, le MX570 A offre les performances et l'efficacité nécessaires pour accomplir le travail. Dans l'ensemble, le NVIDIA GeForce MX570 A est un choix convaincant pour ceux qui recherchent un GPU puissant et économe en énergie pour leurs besoins en informatique mobile. Sa combinaison de hautes performances, d'efficacité et de fonctionnalités avancées en fait une option remarquable pour les ordinateurs portables et les notebooks.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Mobile
Date de lancement
May 2022
Nom du modèle
GeForce MX570 A
Génération
GeForce MX
Horloge de base
832MHz
Horloge Boost
1155MHz
Interface de bus
PCIe 4.0 x8

Spécifications de la mémoire

Taille de Mémoire
2GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
96.00 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
46.20 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
73.92 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
4.731 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
73.92 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
4.636 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
16
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2048
Cache L1
128 KB (per SM)
Cache L2
2MB
TDP
25W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
4.636 TFLOPS
Vulkan
Score
38904
OpenCL
Score
42810

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
4.677 +0.9%
4.636 +0%
A2
4.622 -0.3%
4.579 -1.2%
Vulkan
39646 +1.9%
38993 +0.2%
38421 -1.2%
37482 -3.7%
OpenCL
45244 +5.7%
43046 +0.6%
42289 -1.2%
42238 -1.3%