NVIDIA P102 100

NVIDIA P102 100

À propos du GPU

La carte graphique NVIDIA P102 100 est une véritable puissance conçue pour les plateformes de bureau, offrant des performances impressionnantes pour les tâches exigeantes telles que le jeu, la création de contenu et les applications professionnelles. Avec une fréquence de base de 1582 MHz et une fréquence de boost de 1683 MHz, cette carte graphique offre des performances rapides et réactives, garantissant un gameplay fluide et un multitâche efficace. Les 5 Go de mémoire GDDR5X et une fréquence de mémoire de 1376 MHz offrent une bande passante mémoire suffisante pour gérer de grandes textures et des scènes complexes, offrant une expérience visuelle sans faille. Les 3200 unités de shading permettent à la carte graphique de rendre des images détaillées et réalistes, tandis que les 10,77 TFLOPS de performances théoriques garantissent qu'elle peut gérer même les charges de travail les plus exigeantes avec facilité. En termes de consommation d'énergie, la carte graphique P102 100 a une TDP de 250W, ce qui est élevé mais attendu compte tenu de ses hautes performances. Cependant, il est important de noter que cette carte graphique n'a pas de cache L2, ce qui peut affecter ses performances dans certains scénarios. Dans l'ensemble, la carte graphique NVIDIA P102 100 est une carte graphique haut de gamme qui offre des performances exceptionnelles pour les utilisateurs de bureau. Ses spécifications impressionnantes la rendent bien adaptée aux tâches nécessitant une grande puissance de calcul, telles que le jeu en haute résolution, le rendu 3D et l'apprentissage automatique. Bien que sa consommation d'énergie puisse être une préoccupation pour certains utilisateurs, le P102 100 reste un excellent choix pour ceux qui ont besoin d'une carte graphique haute performance.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
February 2018
Nom du modèle
P102 100
Génération
Mining GPUs
Horloge de base
1582MHz
Horloge Boost
1683MHz
Interface de bus
PCIe 3.0 x4

Spécifications de la mémoire

Taille de Mémoire
5GB
Type de Mémoire
GDDR5X
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
320bit
Horloge Mémoire
1376MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
440.3 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
134.6 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
336.6 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
168.3 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
336.6 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
10.555 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
25
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
3200
Cache L1
48 KB (per SM)
Cache L2
0MB
TDP
250W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
10.555 TFLOPS
Blender
Score
522
OctaneBench
Score
180
OpenCL
Score
65116

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
10.608 +0.5%
10.555
10.547 -0.1%
10.535 -0.2%
Blender
522
521 -0.2%
512 -1.9%
OctaneBench
180
176 -2.2%
163 -9.4%
OpenCL
66179 +1.6%
65973 +1.3%
65116
65038 -0.1%
64427 -1.1%