NVIDIA GeForce RTX 3050 4 GB

NVIDIA GeForce RTX 3050 4 GB

About GPU

The NVIDIA GeForce RTX 3050 4GB GPU is a great addition to the mid-range GPU market, offering solid performance at an affordable price point. With a base clock of 1545MHz and a boost clock of 1740MHz, this GPU is capable of handling most modern games with ease. The 4GB of GDDR6 memory and a memory clock of 1750MHz provide ample bandwidth for smooth gameplay at 1080p resolution. With 2304 shading units and 2MB of L2 cache, the RTX 3050 delivers impressive performance in a variety of gaming scenarios. Despite its relatively low TDP of 90W, the RTX 3050 manages to offer a theoretical performance of 8.018 TFLOPS, making it a capable option for both gaming and content creation tasks. In benchmarks, the RTX 3050 consistently delivers impressive frame rates, with games like GTA 5 running at 1080p with 110 fps, Battlefield 5 at 1080p with 101 fps, Cyberpunk 2077 at 1080p with 42 fps, and Shadow of the Tomb Raider at 1080p with 85 fps. Overall, the NVIDIA GeForce RTX 3050 4GB GPU is a solid choice for budget-conscious gamers who want to experience smooth gaming performance at 1080p resolution. Its combination of performance, efficiency, and affordability make it an attractive option for those looking to build a powerful yet budget-friendly gaming rig.

Basic

Label Name
NVIDIA
Platform
Desktop
Model Name
GeForce RTX 3050 4 GB
Generation
GeForce 30
Base Clock
1545MHz
Boost Clock
1740MHz
Bus Interface
PCIe 4.0 x8
Transistors
8,700 million
RT Cores
18
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
72
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
72
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere

Memory Specifications

Memory Size
4GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
55.68 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
125.3 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
8.018 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
125.3 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
7.858 TFLOPS

Miscellaneous

SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
18
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2304
L1 Cache
128 KB (per SM)
L2 Cache
2MB
TDP
90W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
1x 6-pin
Shader Model
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Suggested PSU
250W

Benchmarks

Shadow of the Tomb Raider 2160p
Score
31 fps
Shadow of the Tomb Raider 1440p
Score
59 fps
Shadow of the Tomb Raider 1080p
Score
83 fps
Cyberpunk 2077 2160p
Score
27 fps
Cyberpunk 2077 1440p
Score
40 fps
Cyberpunk 2077 1080p
Score
41 fps
Battlefield 5 2160p
Score
49 fps
Battlefield 5 1440p
Score
72 fps
Battlefield 5 1080p
Score
103 fps
GTA 5 2160p
Score
39 fps
GTA 5 1440p
Score
73 fps
GTA 5 1080p
Score
108 fps
FP32 (float)
Score
7.858 TFLOPS
Blender
Score
1693
OctaneBench
Score
185

Compared to Other GPU

Shadow of the Tomb Raider 2160p / fps
55 +77.4%
41 +32.3%
18 -41.9%
7 -77.4%
Shadow of the Tomb Raider 1440p / fps
98 +66.1%
77 +30.5%
34 -42.4%
12 -79.7%
Shadow of the Tomb Raider 1080p / fps
151 +81.9%
51 -38.6%
22 -73.5%
Cyberpunk 2077 2160p / fps
67 +148.1%
8 -70.4%
Cyberpunk 2077 1440p / fps
11 -72.5%
Cyberpunk 2077 1080p / fps
127 +209.8%
55 +34.1%
Battlefield 5 2160p / fps
58 +18.4%
39 -20.4%
Battlefield 5 1440p / fps
103 +43.1%
50 -30.6%
Battlefield 5 1080p / fps
156 +51.5%
128 +24.3%
76 -26.2%
41 -60.2%
GTA 5 2160p / fps
146 +274.4%
68 +74.4%
55 +41%
GTA 5 1440p / fps
153 +109.6%
103 +41.1%
82 +12.3%
29 -60.3%
GTA 5 1080p / fps
213 +97.2%
136 +25.9%
FP32 (float) / TFLOPS
8.108 +3.2%
7.332 -6.7%
6.977 -11.2%
Blender
7675.12 +353.3%
3105.61 +83.4%
889 -47.5%
446 -73.7%
OctaneBench
1328 +617.8%
89 -51.9%
47 -74.6%