AMD Radeon RX 570

AMD Radeon RX 570

About GPU

The AMD Radeon RX 570 is a solid mid-range GPU that offers great performance for its price. With a base clock of 1168MHz and a boost clock of 1244MHz, it provides a smooth gaming experience for most modern titles at 1080p resolution. The 4GB GDDR5 memory clocked at 1750MHz ensures that you can handle most games without any issues. With 2048 shading units and 2MB L2 cache, the RX 570 is powerful enough to handle even the most demanding games. The theoretical performance of 5.095 TFLOPS is impressive for a mid-range GPU and is further exemplified by its 3DMark Time Spy score of 3875. In real-world performance, the RX 570 shines as well. In popular titles such as GTA 5, it can handle 1080p resolution at a smooth 100 fps. Even in more graphically demanding games such as Battlefield 5 and Shadow of the Tomb Raider, it maintains respectable frame rates of 69 fps and 52 fps, respectively. It is important to note that the RX 570 has a TDP of 150W, which may require a more powerful power supply in some cases. However, in terms of performance per watt, the RX 570 is quite efficient. In conclusion, the AMD Radeon RX 570 is a great choice for gamers who are looking for a budget-friendly GPU that can handle modern games at 1080p resolution with high frame rates. With its impressive performance and affordable price, it is a solid option for those looking to build a mid-range gaming PC.

Basic

Label Name
AMD
Platform
Desktop
Launch Date
April 2017
Model Name
Radeon RX 570
Generation
Polaris
Base Clock
1168MHz
Boost Clock
1244MHz
Bus Interface
PCIe 3.0 x16
Transistors
5,700 million
Compute Units
32
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
128
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 4.0

Memory Specifications

Memory Size
4GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
39.81 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
159.2 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
5.095 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
318.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.993 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
L1 Cache
16 KB (per CU)
L2 Cache
2MB
TDP
150W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
1x 6-pin
Shader Model
6.4
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Suggested PSU
450W

Benchmarks

Shadow of the Tomb Raider 2160p
Score
18 fps
Shadow of the Tomb Raider 1440p
Score
33 fps
Shadow of the Tomb Raider 1080p
Score
51 fps
Battlefield 5 2160p
Score
26 fps
Battlefield 5 1440p
Score
50 fps
Battlefield 5 1080p
Score
68 fps
GTA 5 2160p
Score
31 fps
GTA 5 1440p
Score
58 fps
GTA 5 1080p
Score
102 fps
FP32 (float)
Score
4.993 TFLOPS
3DMark Time Spy
Score
3953
Hashcat
Score
161084 H/s

Compared to Other GPU

Shadow of the Tomb Raider 2160p / fps
39 +116.7%
26 +44.4%
1 -94.4%
Shadow of the Tomb Raider 1440p / fps
95 +187.9%
75 +127.3%
54 +63.6%
Shadow of the Tomb Raider 1080p / fps
141 +176.5%
107 +109.8%
79 +54.9%
Battlefield 5 2160p / fps
46 +76.9%
34 +30.8%
Battlefield 5 1440p / fps
100 +100%
14 -72%
Battlefield 5 1080p / fps
139 +104.4%
122 +79.4%
90 +32.4%
20 -70.6%
GTA 5 2160p / fps
68 +119.4%
55 +77.4%
GTA 5 1440p / fps
153 +163.8%
103 +77.6%
82 +41.4%
GTA 5 1080p / fps
213 +108.8%
136 +33.3%
FP32 (float) / TFLOPS
5.092 +2%
4.922 -1.4%
4.803 -3.8%
3DMark Time Spy
7462 +88.8%
2758 -30.2%
1770 -55.2%
Hashcat / H/s
175982 +9.2%
175296 +8.8%
161084
160182 -0.6%
157126 -2.5%