NVIDIA P106 100

NVIDIA P106 100

Acerca del GPU

La GPU NVIDIA P106 100 es un buen rendimiento en la plataforma de escritorio, ofreciendo una velocidad de reloj base de 1506MHz y una velocidad de reloj de impulso de 1709MHz. Con 6GB de memoria GDDR5 y una velocidad de reloj de memoria de 2002MHz, esta GPU está bien equipada para manejar cargas de trabajo modernas de juegos y cálculos. Las 1280 unidades de sombreado y 1536KB de caché L2 contribuyen a su rendimiento general, y el TDP de 120W la hace relativamente eficiente en consumo de energía en comparación con algunas GPU de gama alta. En términos de rendimiento bruto, la GPU NVIDIA P106 100 cuenta con un rendimiento teórico de 4.375 TFLOPS, lo que la hace adecuada para juegos a resoluciones de 1080p e incluso 1440p. En 3DMark Time Spy, obtiene una impresionante puntuación de 4045, demostrando aún más su capacidad para manejar tareas gráficas exigentes. Una posible desventaja del P106 100 es su tamaño de memoria de 6GB, lo que puede limitar su capacidad para manejar texturas más grandes y mayores resoluciones en algunos escenarios de juegos. Sin embargo, para muchos usuarios, esto no debería ser un problema significativo. En general, la GPU NVIDIA P106 100 es una opción atractiva para aquellos que buscan un equilibrio entre rendimiento y eficiencia en una GPU de escritorio. Su buen rendimiento tanto en juegos como en tareas de cálculo, junto con su competitivo consumo de energía, la convierten en una opción válida tanto para jugadores conscientes del presupuesto como para profesionales.

Básico

Nombre de Etiqueta
NVIDIA
Plataforma
Desktop
Fecha de Lanzamiento
June 2017
Nombre del modelo
P106 100
Generación
Mining GPUs
Reloj base
1506MHz
Reloj de impulso
1709MHz
Interfaz de bus
PCIe 3.0 x16
Transistores
4,400 million
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
80
Fundición
TSMC
Tamaño proceso
16 nm
Arquitectura
Pascal

Especificaciones de Memoria

Tamaño de memoria
6GB
Tipo de memoria
GDDR5
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
192bit
Reloj de memoria
2002MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
192.2 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
82.03 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
136.7 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
68.36 GFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
136.7 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
4.463 TFLOPS

Misceláneos

Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
10
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
1280
Caché L1
48 KB (per SM)
Caché L2
1536KB
TDP
120W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Conectores de alimentación
1x 6-pin
Modelo de sombreado
6.4
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
48
PSU sugerida
300W

Clasificaciones

FP32 (flotante)
Puntaje
4.463 TFLOPS
3DMark Time Spy
Puntaje
4126
Blender
Puntaje
391
Vulkan
Puntaje
31357
OpenCL
Puntaje
34533
Hashcat
Puntaje
175982 H/s

Comparado con Otras GPU

FP32 (flotante) / TFLOPS
4.841 +8.5%
4.677 +4.8%
4.463
4.303 -3.6%
3DMark Time Spy
7690 +86.4%
5521 +33.8%
4126
2852 -30.9%
1806 -56.2%
Blender
1661 +324.8%
A2
883.68 +126%
445 +13.8%
391
62 -84.1%
Vulkan
69708 +122.3%
40716 +29.8%
31357
5522 -82.4%
OpenCL
74179 +114.8%
56310 +63.1%
34533
16523 -52.2%
9985 -71.1%
Hashcat / H/s
196096 +11.4%
189947 +7.9%
175982
175296 -0.4%
161084 -8.5%