NVIDIA RTX 6000 Ada Generation

NVIDIA RTX 6000 Ada Generation

À propos du GPU

La GPU NVIDIA RTX 6000 de génération Ada est une véritable puissance en termes de performances et de capacités. Avec une mémoire GDDR6 massive de 48 Go, une fréquence de base de 915 MHz et une fréquence boost de 2505 MHz, cette GPU est conçue pour des tâches et des applications intensives telles que l'IA, l'apprentissage en profondeur et le rendu graphique professionnel. L'une des caractéristiques remarquables de la RTX 6000 est ses impressionnantes 18176 unités de ombrage, qui permettent un rendu graphique incroyablement détaillé et réaliste. La cache L2 de 96 Mo contribue également à la capacité de la GPU à gérer des charges de travail massives avec facilité. En termes de consommation d'énergie, la RTX 6000 a une TDP de 300W, ce qui est assez conforme à d'autres GPU de sa catégorie. Cependant, la performance théorique de 91,06 TFLOPS est là où cette GPU brille vraiment. Elle peut gérer des calculs complexes et le traitement de données avec une vitesse et une efficacité incroyables. La RTX 6000 est conçue pour les professionnels qui ont besoin de performances de haut niveau pour leur travail. Que vous soyez un créateur de contenu, un chercheur en IA ou un scientifique des données, cette GPU peut gérer tout ce que vous lui lancez. Le seul inconvénient potentiel est le prix élevé, mais pour ceux qui ont besoin des meilleures performances, l'investissement en vaut la peine. Dans l'ensemble, la GPU NVIDIA RTX 6000 de génération Ada est une puissance en tout sens du terme. Sa mémoire massive, ses hautes fréquences d'horloge et ses impressionnantes unités de ombrage en font un choix idéal pour les professionnels à la recherche de performances exceptionnelles.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
December 2022
Nom du modèle
RTX 6000 Ada Generation
Génération
Quadro Ada
Horloge de base
915MHz
Horloge Boost
2505MHz
Interface de bus
PCIe 4.0 x16

Spécifications de la mémoire

Taille de Mémoire
48GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
384bit
Horloge Mémoire
2500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
960.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
481.0 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
1423 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
91.06 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
1423 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
89.239 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
142
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
18176
Cache L1
128 KB (per SM)
Cache L2
96MB
TDP
300W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
89.239 TFLOPS
3DMark Time Spy
Score
10122
Blender
Score
11924
OctaneBench
Score
1114
Vulkan
Score
249714
OpenCL
Score
274348

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
166.668 +86.8%
91.042 +2%
62.546 -29.9%
51.381 -42.4%
3DMark Time Spy
20021 +97.8%
12960 +28%
5781 -42.9%
Blender
12832 +7.6%
1222 -89.8%
521 -95.6%
203 -98.3%
OctaneBench
1328 +19.2%
163 -85.4%
89 -92%
47 -95.8%
Vulkan
254749 +2%
83205 -66.7%
54373 -78.2%
29028 -88.4%
OpenCL
362331 +32.1%
91174 -66.8%
65973 -76%
43046 -84.3%