AMD Radeon Pro W5500
Über GPU
Die AMD Radeon Pro W5500 GPU ist eine leistungsstarke Grafikkarte, die für den professionellen Einsatz in Desktop-Workstations konzipiert wurde. Mit einer Basistaktgeschwindigkeit von 1744 MHz und einer Boost-Taktgeschwindigkeit von 1855 MHz liefert diese GPU hervorragende Leistung für anspruchsvolle Aufgaben wie 3D-Rendering, Videobearbeitung und computergestütztes Design.
Mit 8 GB GDDR6-Speicher, der mit 1750 MHz läuft, bietet die Radeon Pro W5500 ausreichend Speicherbandbreite für die Verarbeitung großer Datensätze und komplexe Visualisierungen. Die 1408 Shader-Einheiten sorgen für ein reibungsloses und effizientes Rendering, während die 2 MB L2-Cache helfen, die Speicherzugriffslatenz zu reduzieren und die Gesamtleistung zu verbessern.
Mit einem TDP von 125 W bietet die Radeon Pro W5500 eine gute Balance zwischen Leistung und Energieeffizienz. Dies macht sie für eine Vielzahl von Workstation-PCs geeignet, ohne dass eine übermäßige Kühlung oder Stromversorgungskapazität erforderlich ist.
Die theoretische Leistung von 5,224 TFLOPS unterstreicht weiter die Fähigkeiten der GPU und ermöglicht es Fachleuten, komplexe Arbeitslasten mühelos zu bewältigen. Egal, ob es sich um Arbeiten mit hochauflösenden Grafiken, Virtual-Reality-Inhalten oder rechenintensive Simulationen handelt, die Radeon Pro W5500 bietet die Leistung, die für die Aufgaben erforderlich ist.
Zusammenfassend ist die AMD Radeon Pro W5500 GPU eine solide Wahl für Fachleute, die zuverlässige und effiziente Grafikleistung benötigen. Ihre Kombination aus hohen Taktraten, ausreichend Speicher und Energieeffizienz macht sie zu einer überzeugenden Option für anspruchsvolle Arbeitslasten.
Basic
Markenname
AMD
Plattform
Desktop
Erscheinungsdatum
February 2020
Modellname
Radeon Pro W5500
Generation
Radeon Pro
Basis-Takt
1744MHz
Boost-Takt
1855MHz
Bus-Schnittstelle
PCIe 4.0 x8
Transistoren
6,400 million
Einheiten berechnen
22
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
88
Foundry
TSMC
Prozessgröße
7 nm
Architektur
RDNA 1.0
Speicherspezifikationen
Speichergröße
8GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
Speichertakt
1750MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
224.0 GB/s
Theoretische Leistung
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
59.36 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
163.2 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
10.45 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
326.5 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
5.328
TFLOPS
Verschiedenes
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1408
L2-Cache
2MB
TDP (Thermal Design Power)
125W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Stromanschlüsse
1x 6-pin
Shader-Modell
6.5
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
32
Empfohlene PSU (Stromversorgung)
300W
Benchmarks
FP32 (float)
Punktzahl
5.328
TFLOPS
3DMark Time Spy
Punktzahl
4802
Blender
Punktzahl
512
Vulkan
Punktzahl
40401
OpenCL
Punktzahl
45244
Im Vergleich zu anderen GPUs
FP32 (float)
/ TFLOPS
3DMark Time Spy
Blender
Vulkan
OpenCL