NVIDIA GeForce GTX 1660 Ti Max Q
Acerca del GPU
La NVIDIA GeForce GTX 1660 Ti Max Q es una potente GPU móvil que ofrece un impresionante rendimiento para juegos y creación de contenido. Con una frecuencia base de 1140MHz y una frecuencia de impulso de 1335MHz, esta GPU proporciona representaciones gráficas suaves y rápidas para aplicaciones exigentes.
Los 6GB de memoria GDDR6, con una frecuencia de memoria de 1500MHz, aseguran que la GTX 1660 Ti Max Q pueda manejar texturas de alta resolución y escenas complejas sin sacrificar el rendimiento. Con 1536 unidades de sombreado y 1536KB de caché L2, esta GPU es capaz de manejar una amplia gama de tareas con facilidad.
Una de las características destacadas de la GTX 1660 Ti Max Q es su TDP (potencia de diseño térmico), que permite un uso eficiente de la energía sin sacrificar el rendimiento. Esto la convierte en una excelente opción para laptops y otros dispositivos móviles donde la eficiencia energética es crucial.
En cuanto al rendimiento, la GTX 1660 Ti Max Q cuenta con un rendimiento teórico de 4.101 TFLOPS y una puntuación 3DMark Time Spy de 4953, lo que indica su capacidad para manejar juegos y aplicaciones modernas con facilidad.
En general, la NVIDIA GeForce GTX 1660 Ti Max Q es una elección sólida para usuarios que buscan una GPU móvil de alto rendimiento. Su combinación de eficiencia energética, ancho de banda de memoria elevado y rendimiento impresionante la hacen una gran opción para laptops de juegos y estaciones de trabajo móviles. Ya sea que seas un jugador, creador de contenido o usuario profesional, la GTX 1660 Ti Max Q tiene las capacidades para satisfacer tus necesidades.
Básico
Nombre de Etiqueta
NVIDIA
Plataforma
Mobile
Fecha de Lanzamiento
April 2019
Nombre del modelo
GeForce GTX 1660 Ti Max Q
Generación
GeForce 16 Mobile
Reloj base
1140MHz
Reloj de impulso
1335MHz
Interfaz de bus
PCIe 3.0 x16
Transistores
6,600 million
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
96
Fundición
TSMC
Tamaño proceso
12 nm
Arquitectura
Turing
Especificaciones de Memoria
Tamaño de memoria
6GB
Tipo de memoria
GDDR6
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
192bit
Reloj de memoria
1500MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
288.0 GB/s
Rendimiento teórico
Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
64.08 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
128.2 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
8.202 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
128.2 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
4.183
TFLOPS
Misceláneos
Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
24
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
1536
Caché L1
64 KB (per SM)
Caché L2
1536KB
TDP
Unknown
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.5
Conectores de alimentación
None
Modelo de sombreado
6.7
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
48
Clasificaciones
FP32 (flotante)
Puntaje
4.183
TFLOPS
3DMark Time Spy
Puntaje
4854
Blender
Puntaje
814
OctaneBench
Puntaje
107
Comparado con Otras GPU
FP32 (flotante)
/ TFLOPS
3DMark Time Spy
Blender
OctaneBench