AMD Radeon RX 6650M

AMD Radeon RX 6650M

Acerca del GPU

La AMD Radeon RX 6650M es una potente GPU móvil que ofrece un rendimiento impresionante para juegos y creación de contenido. Con una velocidad de reloj base de 2068MHz y una velocidad de reloj de impulso de 2416MHz, esta GPU ofrece renderización de gráficos suave y rápida, permitiendo una experiencia de juego sin interrupciones y una edición de video eficiente. Los 8GB de memoria GDDR6 y una velocidad de reloj de memoria de 2000MHz proporcionan recursos suficientes para manejar texturas de alta resolución y escenas complejas. Las 1792 unidades de sombreado ofrecen capacidades avanzadas de sombreado y renderizado, mientras que la caché L2 de 2MB ayuda a reducir la latencia y mejorar el rendimiento general. Con un TDP de 120W, la Radeon RX 6650M es capaz de ofrecer su impresionante rendimiento sin consumir excesiva energía, lo que la hace adecuada para una amplia gama de laptops y dispositivos portátiles. El rendimiento teórico de 8.659 TFLOPS asegura que esta GPU es capaz de manejar tareas exigentes y ofrecer altas tasas de cuadros en juegos modernos. En general, la AMD Radeon RX 6650M es una opción sólida para jugadores y creadores de contenido que buscan una GPU móvil de alto rendimiento. Sus impresionantes velocidades de reloj, generosa capacidad de memoria y uso eficiente de energía la convierten en una opción versátil para aquellos que necesitan un rendimiento gráfico confiable sobre la marcha. Ya sea que estés jugando, editando videos o utilizando software de modelado 3D, la Radeon RX 6650M está a la altura de la tarea.

Básico

Nombre de Etiqueta
AMD
Plataforma
Mobile
Fecha de Lanzamiento
January 2022
Nombre del modelo
Radeon RX 6650M
Generación
Mobility Radeon
Reloj base
2068MHz
Reloj de impulso
2416MHz
Interfaz de bus
PCIe 4.0 x8
Transistores
11,060 million
Núcleos RT
28
Unidades de cálculo
28
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
112
Fundición
TSMC
Tamaño proceso
7 nm
Arquitectura
RDNA 2.0

Especificaciones de Memoria

Tamaño de memoria
8GB
Tipo de memoria
GDDR6
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
128bit
Reloj de memoria
2000MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
256.0 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
154.6 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
270.6 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
17.32 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
541.2 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
8.832 TFLOPS

Misceláneos

Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
1792
Caché L1
128 KB per Array
Caché L2
2MB
TDP
120W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Conectores de alimentación
None
Modelo de sombreado
6.5
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
64

Clasificaciones

FP32 (flotante)
Puntaje
8.832 TFLOPS
Blender
Puntaje
927
Vulkan
Puntaje
71844
OpenCL
Puntaje
60223

Comparado con Otras GPU

FP32 (flotante) / TFLOPS
10.094 +14.3%
8.696 -1.5%
8.229 -6.8%
Blender
1821.91 +96.5%
492 -46.9%
249 -73.1%
Vulkan
173796 +141.9%
100987 +40.6%
44469 -38.1%
20143 -72%
OpenCL
121443 +101.7%
77320 +28.4%
35443 -41.1%
18130 -69.9%