NVIDIA GeForce GTX 1660 Ti Max Q

NVIDIA GeForce GTX 1660 Ti Max Q

Über GPU

Die NVIDIA GeForce GTX 1660 Ti Max Q ist eine leistungsstarke mobile GPU, die beeindruckende Leistung für Gaming und Content-Erstellung bietet. Mit einer Basisfrequenz von 1140 MHz und einer Boost-Frequenz von 1335 MHz bietet diese GPU eine reibungslose und schnelle Grafikrendering für anspruchsvolle Anwendungen. Der 6GB GDDR6-Speicher mit einer Speicherfrequenz von 1500 MHz stellt sicher, dass die GTX 1660 Ti Max Q hochauflösende Texturen und komplexe Szenen ohne Leistungseinbußen verarbeiten kann. Mit 1536 Shading-Einheiten und 1536 KB L2-Cache ist diese GPU in der Lage, eine Vielzahl von Aufgaben mühelos zu bewältigen. Eine der herausragenden Funktionen der GTX 1660 Ti Max Q ist ihre TDP (thermale Designleistung), die eine effiziente Stromnutzung ohne Leistungseinbußen ermöglicht. Dies macht sie zu einer hervorragenden Wahl für Laptops und andere mobile Geräte, bei denen die Energieeffizienz entscheidend ist. In Bezug auf die Leistung bietet die GTX 1660 Ti Max Q eine theoretische Leistung von 4,101 TFLOPS und einen 3DMark Time Spy-Score von 4953, was auf ihre Fähigkeit hinweist, moderne Spiele und Anwendungen mühelos zu bewältigen. Insgesamt ist die NVIDIA GeForce GTX 1660 Ti Max Q eine solide Wahl für Benutzer, die nach einer leistungsstarken mobilen GPU suchen. Ihre Kombination aus Energieeffizienz, hoher Speicherbandbreite und beeindruckender Leistung macht sie zu einer großartigen Option für Gaming-Laptops und mobile Workstations. Egal, ob Sie ein Gamer, Content-Ersteller oder professioneller Benutzer sind, die GTX 1660 Ti Max Q hat die Fähigkeiten, um Ihren Anforderungen gerecht zu werden.

Basic

Markenname
NVIDIA
Plattform
Mobile
Erscheinungsdatum
April 2019
Modellname
GeForce GTX 1660 Ti Max Q
Generation
GeForce 16 Mobile
Basis-Takt
1140MHz
Boost-Takt
1335MHz
Bus-Schnittstelle
PCIe 3.0 x16
Transistoren
6,600 million
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
96
Foundry
TSMC
Prozessgröße
12 nm
Architektur
Turing

Speicherspezifikationen

Speichergröße
6GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
Speichertakt
1500MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
288.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
64.08 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
128.2 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
8.202 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
128.2 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
4.183 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
24
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1536
L1-Cache
64 KB (per SM)
L2-Cache
1536KB
TDP (Thermal Design Power)
Unknown
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.5
Stromanschlüsse
None
Shader-Modell
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48

Benchmarks

FP32 (float)
Punktzahl
4.183 TFLOPS
3DMark Time Spy
Punktzahl
4854
Blender
Punktzahl
814
OctaneBench
Punktzahl
107

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
4.365 +4.4%
4.287 +2.5%
4.094 -2.1%
4.014 -4%
3DMark Time Spy
7004 +44.3%
2329 -52%