NVIDIA Quadro RTX 8000

NVIDIA Quadro RTX 8000

Über GPU

Die NVIDIA Quadro RTX 8000 ist eine leistungsstarke GPU, die für den professionellen Einsatz konzipiert wurde. Mit einer Basistaktfrequenz von 1395 MHz und einer Boost-Taktfrequenz von 1770 MHz bietet diese GPU blitzschnelle Leistung für anspruchsvolle Aufgaben wie 3D-Rendering, Videobearbeitung und wissenschaftliche Simulationen. Eine der herausragenden Eigenschaften der Quadro RTX 8000 ist ihr massiver 48 GB GDDR6-Speicher, der das Bearbeiten extrem großer Datensätze und komplexer Szenen ohne Probleme ermöglicht. Die Speichertaktfrequenz von 1750 MHz ermöglicht schnellen Datenzugriff, während der 6 MB L2-Cache die Leistung weiter verbessert, indem er die Latenz reduziert. Mit beeindruckenden 4608 Shader-Einheiten und einer TDP von 260W bietet die Quadro RTX 8000 eine unübertroffene Grafikverarbeitungsleistung. Ihre theoretische Leistung von 16,31 TFLOPS macht sie ideal für anspruchsvollste professionelle Anwendungen und gewährleistet einen reibungslosen und effizienten Arbeitsablauf für Fachleute in Branchen wie Design, Animation und Ingenieurwesen. Neben ihrer rohen Leistung verfügt die Quadro RTX 8000 auch über fortschrittliche Funktionen wie Echtzeit-Raytracing und KI-verbesserte Workflows, die sie zu einem vielseitigen Werkzeug für modernste Visualisierungs- und Simulationsaufgaben machen. Insgesamt ist die NVIDIA Quadro RTX 8000 eine beeindruckende GPU, die kompromisslose Leistung für professionelle Anwender bietet, die das Beste verlangen. Ihre Kombination aus roher Rechenleistung, großzügiger Speicherkapazität und fortschrittlichen Funktionen machen sie zur ersten Wahl für Fachleute, die in Bereichen arbeiten, die kompromisslose Leistung erfordern.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
August 2018
Modellname
Quadro RTX 8000
Generation
Quadro
Basis-Takt
1395MHz
Boost-Takt
1770MHz
Bus-Schnittstelle
PCIe 3.0 x16
Transistoren
18,600 million
RT-Kerne
72
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
576
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
288
Foundry
TSMC
Prozessgröße
12 nm
Architektur
Turing

Speicherspezifikationen

Speichergröße
48GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
384bit
Speichertakt
1750MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
672.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
169.9 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
509.8 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
32.62 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
509.8 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
15.984 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
72
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
4608
L1-Cache
64 KB (per SM)
L2-Cache
6MB
TDP (Thermal Design Power)
260W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Stromanschlüsse
1x 6-pin + 1x 8-pin
Shader-Modell
6.6
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
96
Empfohlene PSU (Stromversorgung)
600W

Benchmarks

FP32 (float)
Punktzahl
15.984 TFLOPS
Blender
Punktzahl
3412
OctaneBench
Punktzahl
371
OpenCL
Punktzahl
125554

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
18.38 +15%
16.797 +5.1%
15.606 -2.4%
Blender
12832 +276.1%
1222 -64.2%
521 -84.7%
203 -94.1%
OctaneBench
1328 +258%
163 -56.1%
89 -76%
47 -87.3%
OpenCL
362331 +188.6%
149268 +18.9%
66774 -46.8%
46389 -63.1%