NVIDIA RTX A3000 Mobile 12 GB
Über GPU
Die NVIDIA RTX A3000 Mobile 12GB GPU ist eine beeindruckende Ergänzung zur professionellen Plattform und bietet leistungsstarke Fähigkeiten für eine Vielzahl von Rechenaufgaben. Mit einer Basisfrequenz von 855MHz und einer Boost-Frequenz von 1440MHz liefert diese GPU eine hervorragende Geschwindigkeit und Effizienz für anspruchsvolle Workloads.
Die 12GB GDDR6-Speicher und eine Speichertaktfrequenz von 1750MHz sorgen für eine reibungslose und zuverlässige Leistung, auch bei der Verarbeitung großer Datensätze oder komplexer Simulationen. Die 4096 Shading-Einheiten und der 4MB L2-Cache steigern die Verarbeitungsleistung der GPU weiter und ermöglichen es ihr, intensive Grafikaufgaben und Rechenaufgaben mühelos zu bewältigen.
Eine herausragende Eigenschaft der NVIDIA RTX A3000 Mobile ist ihr geringer TDP-Wert von 130W, was sie zu einer energieeffizienten Option für Fachleute macht, die leistungsstarke Rechenleistung ohne übermäßigen Stromverbrauch benötigen. In Kombination mit ihrer theoretischen Leistung von 11,8 TFLOPS ist sie eine überzeugende Wahl für Nutzer, die Leistung und Energieeffizienz in Einklang bringen müssen.
Insgesamt bietet die NVIDIA RTX A3000 Mobile 12GB GPU eine ausgezeichnete Kombination aus Geschwindigkeit, Energieeffizienz und Speicherkapazität und eignet sich daher für eine Vielzahl von professionellen Anwendungen wie 3D-Rendering, CAD-Design, wissenschaftliche Simulationen und mehr. Egal ob Sie ein kreativer Profi, Wissenschaftler oder Ingenieur sind, diese GPU wird sicher die Leistung liefern, die Sie benötigen, um Ihre Ideen zum Leben zu erwecken.
Basic
Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
March 2022
Modellname
RTX A3000 Mobile 12 GB
Generation
Quadro Mobile
Basis-Takt
855MHz
Boost-Takt
1440MHz
Bus-Schnittstelle
PCIe 4.0 x16
Transistoren
17,400 million
RT-Kerne
32
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
128
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
128
Foundry
Samsung
Prozessgröße
8 nm
Architektur
Ampere
Speicherspezifikationen
Speichergröße
12GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
Speichertakt
1750MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
336.0 GB/s
Theoretische Leistung
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
92.16 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
184.3 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
11.80 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
184.3 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
12.036
TFLOPS
Verschiedenes
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
32
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
4096
L1-Cache
128 KB (per SM)
L2-Cache
4MB
TDP (Thermal Design Power)
130W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Stromanschlüsse
None
Shader-Modell
6.6
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
Benchmarks
FP32 (float)
Punktzahl
12.036
TFLOPS
3DMark Time Spy
Punktzahl
8089
Blender
Punktzahl
1480
OctaneBench
Punktzahl
216
Im Vergleich zu anderen GPUs
FP32 (float)
/ TFLOPS
3DMark Time Spy
Blender
OctaneBench