AMD Radeon Pro 5300M

AMD Radeon Pro 5300M

À propos du GPU

La AMD Radeon Pro 5300M est une GPU puissante et efficace conçue pour les plateformes mobiles. Avec une fréquence de base de 1000 MHz et une fréquence de suralimentation de 1250 MHz, ce GPU offre des performances impressionnantes pour les applications professionnelles et de jeux. Les 4 Go de mémoire GDDR6 et une fréquence de mémoire de 1500 MHz offrent un accès rapide et efficace aux données graphiques, tandis que le cache L2 de 2 Mo contribue à améliorer les performances globales. Avec 1280 unités d'ombrage, la AMD Radeon Pro 5300M est bien équipée pour gérer les tâches graphiques exigeantes, offrant des visuels lisses et nets. La performance théorique de 3,2 TFLOPS souligne davantage sa capacité à gérer des charges de travail graphiques complexes. De plus, avec une puissance thermique de 85W, la GPU trouve un bon équilibre entre les performances et l'efficacité énergétique, ce qui la rend adaptée à une large gamme de dispositifs mobiles. Dans l'ensemble, la AMD Radeon Pro 5300M est un choix solide pour les professionnels et les joueurs qui ont besoin d'une GPU haute performance dans leurs ordinateurs portables. Sa combinaison de hautes fréquences d'horloge, de mémoire abondante et d'une utilisation efficace de l'énergie en fait une option polyvalente pour ceux qui ont besoin de performances graphiques fiables en déplacement. Que ce soit pour la conception graphique, le montage vidéo ou les jeux, la AMD Radeon Pro 5300M offre des performances impressionnantes et est une option digne d'intérêt pour toute personne ayant besoin d'une mise à niveau de GPU mobile.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
November 2019
Nom du modèle
Radeon Pro 5300M
Génération
Radeon Pro Mac
Horloge de base
1000MHz
Horloge Boost
1250MHz
Interface de bus
PCIe 4.0 x8
Transistors
6,400 million
Unités de calcul
20
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
80
Fonderie
TSMC
Taille de processus
7 nm
Architecture
RDNA 1.0

Spécifications de la mémoire

Taille de Mémoire
4GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
192.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
40.00 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
100.0 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
6.400 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
200.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
3.264 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1280
Cache L2
2MB
TDP
85W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_1)
Connecteurs d'alimentation
None
Modèle de shader
6.5
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32

Benchmarks

FP32 (flottant)
Score
3.264 TFLOPS
Vulkan
Score
24807
OpenCL
Score
29139

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
3.406 +4.4%
3.133 -4%
3.02 -7.5%
Vulkan
98446 +296.8%
69708 +181%
40716 +64.1%
5522 -77.7%
OpenCL
69319 +137.9%
48324 +65.8%
14328 -50.8%
9440 -67.6%