Intel Arc A350

Intel Arc A350

À propos du GPU

La carte graphique Intel Arc A350 est une carte graphique d'entrée de gamme solide conçue pour une utilisation de bureau. Avec une fréquence de base de 2000 MHz et une fréquence de boost de 2000 MHz, cette carte graphique offre une vitesse et des performances décentes pour les tâches informatiques quotidiennes et le jeu léger. Avec 4 Go de mémoire GDDR6 et une fréquence de mémoire de 1937 MHz, l'Arc A350 offre des graphismes fluides et réactifs pour la plupart des jeux occasionnels et grand public. Les 768 unités de shader et les 4 Mo de cache L2 améliorent encore sa capacité à gérer les tâches graphiques intensives. L'un des aspects les plus impressionnants de l'Arc A350 est sa faible consommation d'énergie, avec un TDP de seulement 25W. Cela en fait un excellent choix pour les utilisateurs souhaitant construire des systèmes de bureau écoénergétiques sans sacrifier les performances graphiques. En termes de performance théorique, l'Arc A350 offre un impressionnant 3,072 TFLOPS, ce qui le rend plus que capable de gérer les jeux modernes et les applications multimédias en résolution 1080p. En fin de compte, la carte graphique Intel Arc A350 est une option solide pour les utilisateurs soucieux de leur budget à la recherche d'une carte graphique fiable et efficace pour leur système de bureau. Bien qu'elle ne soit peut-être pas en mesure de gérer les jeux les plus exigeants aux paramètres maximaux, elle offre un bon équilibre entre performances, efficacité énergétique et abordabilité pour l'utilisateur moyen.

Basique

Nom de l'étiquette
Intel
Plate-forme
Desktop
Date de lancement
January 2022
Nom du modèle
Arc A350
Génération
Alchemist
Horloge de base
2000MHz
Horloge Boost
2000MHz
Interface de bus
PCIe 4.0 x8
Transistors
7,200 million
Cœurs RT
6
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
96
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
48
Fonderie
TSMC
Taille de processus
6 nm
Architecture
Generation 12.7

Spécifications de la mémoire

Taille de Mémoire
4GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1937MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
124.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
48.00 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
96.00 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
6.144 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
768.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
3.133 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
768
Cache L2
4MB
TDP
25W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
24
Alimentation suggérée
200W

Benchmarks

FP32 (flottant)
Score
3.133 TFLOPS
3DMark Time Spy
Score
3239

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
3.264 +4.2%
3.133
3.02 -3.6%
2.902 -7.4%
3DMark Time Spy
6131 +89.3%
4410 +36.2%
3239
2049 -36.7%
1262 -61%