NVIDIA RTX A3000 Mobile 12 GB

NVIDIA RTX A3000 Mobile 12 GB

À propos du GPU

La carte graphique NVIDIA RTX A3000 Mobile 12GB GPU est une impressionnante addition à la plateforme professionnelle, offrant des capacités de haute performance pour une large gamme de tâches informatiques. Avec une fréquence de base de 855 MHz et une fréquence boost de 1440 MHz, cette carte graphique offre une vitesse et une efficacité excellentes pour les charges de travail exigeantes. Les 12 Go de mémoire GDDR6 et une fréquence de mémoire de 1750 MHz garantissent des performances fluides et fiables, même lors de la manipulation de grands ensembles de données ou de simulations complexes. Les 4096 unités de shader et le cache L2 de 4 Mo renforcent davantage la puissance de traitement de la carte graphique, lui permettant de gérer facilement des tâches graphiques et de calcul intensives. L'une des caractéristiques remarquables de la NVIDIA RTX A3000 Mobile est son faible TDP de 130W, ce qui en fait une option économe en énergie pour les professionnels qui ont besoin de calcul haute performance sans consommation excessive d'énergie. Associé à sa performance théorique de 11,8 TFLOPS, il s'agit d'un choix convaincant pour les utilisateurs qui ont besoin d'équilibrer performance et efficacité énergétique. Dans l'ensemble, la carte graphique NVIDIA RTX A3000 Mobile 12GB offre une excellente combinaison de vitesse, d'efficacité énergétique et de capacité mémoire, la rendant parfaitement adaptée à une variété d'applications professionnelles telles que le rendu 3D, la conception CAO, les simulations scientifiques, et plus encore. Que vous soyez un professionnel créatif, un scientifique ou un ingénieur, cette carte graphique est sûre de vous offrir les performances dont vous avez besoin pour concrétiser vos idées.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
March 2022
Nom du modèle
RTX A3000 Mobile 12 GB
Génération
Quadro Mobile
Horloge de base
855MHz
Horloge Boost
1440MHz
Interface de bus
PCIe 4.0 x16
Transistors
17,400 million
Cœurs RT
32
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
128
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
128
Fonderie
Samsung
Taille de processus
8 nm
Architecture
Ampere

Spécifications de la mémoire

Taille de Mémoire
12GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
192bit
Horloge Mémoire
1750MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
336.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
92.16 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
184.3 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
11.80 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
184.3 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
12.036 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
32
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
4096
Cache L1
128 KB (per SM)
Cache L2
4MB
TDP
130W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Connecteurs d'alimentation
None
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
64

Benchmarks

FP32 (flottant)
Score
12.036 TFLOPS
3DMark Time Spy
Score
8089
Blender
Score
1480
OctaneBench
Score
216

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
12.485 +3.7%
11.642 -3.3%
11.113 -7.7%
3DMark Time Spy
10392 +28.5%
6135 -24.2%
4451 -45%
Blender
5670 +283.1%
2640.18 +78.4%
807 -45.5%
379 -74.4%
OctaneBench
1328 +514.8%
89 -58.8%
47 -78.2%