NVIDIA RTX 2000 Ada Generation

NVIDIA RTX 2000 Ada Generation

Über GPU

Die NVIDIA RTX 2000 Ada Generation GPU ist eine leistungsstarke Grafikkarte, die beeindruckende Leistung, atemberaubende visuelle Effekte und innovative Funktionen für Desktop-Benutzer bietet. Mit einer Basis-Taktfrequenz von 1620MHz und einer Boost-Taktfrequenz von 2130MHz liefert diese GPU eine außergewöhnliche Geschwindigkeit und Reaktionsfähigkeit für Gaming, Content-Erstellung und mehr. Eine der herausragenden Eigenschaften der RTX 2000 Ada Generation GPU ist ihr großzügiger 16GB GDDR6-Speicher, der ein reibungsloses und nahtloses Multitasking und das Rendern komplexer Grafiken ermöglicht. Die Speichertaktfrequenz von 2000MHz garantiert schnelle Datenübertragung für eine verbesserte Gesamtleistung. Mit 2816 Shading-Units und 12MB L2-Cache ist diese GPU in der Lage, selbst die anspruchsvollsten grafikintensiven Aufgaben mühelos zu bewältigen. Trotz ihrer beeindruckenden Leistungsfähigkeit behält die RTX 2000 Ada Generation GPU eine relativ niedrige TDP von 70W bei, was sie zu einer energieeffizienten Option für Desktop-Benutzer macht. Die theoretische Leistung von 12,24 TFLOPS spricht für die rohe Rechenleistung dieser GPU und macht sie zu einer Top-Wahl für Benutzer, die schnelles Rendern und nahtlose Spielerlebnisse benötigen. Insgesamt ist die NVIDIA RTX 2000 Ada Generation GPU eine erstklassige Option für Desktop-Benutzer, die Leistung, Geschwindigkeit und Effizienz priorisieren. Egal, ob Sie ein Hardcore-Gamer, ein professioneller Content-Ersteller oder einfach ein Power-User sind, der das Beste vom Besten sucht, diese GPU überzeugt auf allen Ebenen.

Basic

Markenname
NVIDIA
Plattform
Desktop
Erscheinungsdatum
February 2024
Modellname
RTX 2000 Ada Generation
Generation
Quadro Ada
Basis-Takt
1620MHz
Boost-Takt
2130MHz
Bus-Schnittstelle
PCIe 4.0 x8
Transistoren
18,900 million
RT-Kerne
22
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
88
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
88
Foundry
TSMC
Prozessgröße
5 nm
Architektur
Ada Lovelace

Speicherspezifikationen

Speichergröße
16GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
Speichertakt
2000MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
256.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
102.2 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
187.4 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
12.00 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
187.4 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
12.24 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
22
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2816
L1-Cache
128 KB (per SM)
L2-Cache
12MB
TDP (Thermal Design Power)
70W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Stromanschlüsse
None
Shader-Modell
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
Empfohlene PSU (Stromversorgung)
250W

Benchmarks

FP32 (float)
Punktzahl
12.24 TFLOPS
Vulkan
Punktzahl
84494
OpenCL
Punktzahl
86545

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
12.536 +2.4%
11.789 -3.7%
Vulkan
254749 +201.5%
L4
120950 +43.1%
54373 -35.6%
30994 -63.3%
OpenCL
239769 +177%
138595 +60.1%
63654 -26.4%
39502 -54.4%