NVIDIA Quadro RTX 5000 Max Q

NVIDIA Quadro RTX 5000 Max Q

Über GPU

Die NVIDIA Quadro RTX 5000 Max Q GPU ist eine professionelle Grafikkarte, die für anspruchsvolle Arbeitslasten wie 3D-Rendering, CAD-Design und professionelle Videobearbeitung konzipiert ist. Mit einer Basis-Taktfrequenz von 600 MHz und einer Boost-Taktfrequenz von 1350 MHz bietet diese GPU leistungsstarke Leistung für Fachleute in kreativen Branchen. Eine der herausragenden Eigenschaften des Quadro RTX 5000 Max Q ist der große 16GB GDDR6-Speicher, der eine reibungslose Bearbeitung von komplexen und speicherintensiven Aufgaben ermöglicht. Die Speichertaktfrequenz von 1500MHz verbessert zusätzlich die Fähigkeit der GPU, große Datensätze und komplexe Simulationen zu verarbeiten. Mit 3072 Shader-Einheiten und 4MB L2-Cache ist die Quadro RTX 5000 Max Q in der Lage, hochwertige, detaillierte Grafiken und eine reibungslose, reaktionsschnelle Leistung zu liefern. Die 80W TDP der GPU gewährleistet einen effizienten Stromverbrauch und macht sie für den Einsatz in mobilen Workstations geeignet. In Bezug auf die Leistung bietet die Quadro RTX 5000 Max Q eine theoretische Leistung von 8,294 TFLOPS und erreicht einen 3DMark Time Spy-Score von 7879, was sie zu einem Top-Performer in ihrer Kategorie macht. Insgesamt ist die NVIDIA Quadro RTX 5000 Max Q GPU eine solide Wahl für Fachleute, die zuverlässige, leistungsstarke Grafiken für ihre Arbeit benötigen. Ihr reichlich vorhandener Speicher, beeindruckende Taktfrequenzen und effizienter Stromverbrauch machen sie zu einem wertvollen Gut für Profis, die eine zuverlässige Grafiklösung benötigen.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
May 2019
Modellname
Quadro RTX 5000 Max Q
Generation
Quadro Mobile
Basis-Takt
600MHz
Boost-Takt
1350MHz
Bus-Schnittstelle
PCIe 3.0 x16
Transistoren
13,600 million
RT-Kerne
48
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
384
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
192
Foundry
TSMC
Prozessgröße
12 nm
Architektur
Turing

Speicherspezifikationen

Speichergröße
16GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
Speichertakt
1500MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
384.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
86.40 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
259.2 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
16.59 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
259.2 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
8.46 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
48
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
3072
L1-Cache
64 KB (per SM)
L2-Cache
4MB
TDP (Thermal Design Power)
80W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Stromanschlüsse
None
Shader-Modell
6.6
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64

Benchmarks

FP32 (float)
Punktzahl
8.46 TFLOPS
3DMark Time Spy
Punktzahl
8037
Blender
Punktzahl
1721
OctaneBench
Punktzahl
93

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
8.774 +3.7%
7.872 -7%
3DMark Time Spy
10356 +28.9%
6131 -23.7%
4410 -45.1%
Blender
12832 +645.6%
2669 +55.1%
521 -69.7%
203 -88.2%
OctaneBench
358 +284.9%
56 -39.8%
28 -69.9%