NVIDIA Quadro P6000

NVIDIA Quadro P6000

À propos du GPU

Le NVIDIA Quadro P6000 est une puissante GPU professionnelle conçue pour des charges de travail intensives dans des domaines tels que le rendu 3D, la CAO/FAO et les simulations scientifiques. Avec une vitesse d'horloge de base de 1506 MHz et une vitesse d'horloge boost de 1645 MHz, cette GPU offre des performances exceptionnelles pour les tâches exigeantes. Les impressionnants 24 Go de mémoire GDDR5X et une fréquence mémoire de 1127 MHz garantissent qu'elle peut gérer facilement de grands ensembles de données et des modèles complexes. Avec 3840 unités de shader et 3 Mo de cache L2, le Quadro P6000 offre des capacités de rendu exceptionnelles et une manipulation fluide des effets visuels complexes. De plus, le TDP de 250W et les performances théoriques de 12,63 TFLOPS en font une centrale pour les utilisateurs professionnels ayant besoin de calculs haute performance pour leur travail. Le Quadro P6000 est adapté aux charges de travail exigeantes telles que l'apprentissage approfondi, le développement d'IA et les applications de réalité virtuelle. Ses performances robustes et sa capacité mémoire supérieure en font un choix de premier plan pour les professionnels ayant besoin d'une GPU fiable et performante pour leur travail. Dans l'ensemble, le NVIDIA Quadro P6000 offre des performances et une fiabilité inégalées pour les utilisateurs professionnels ayant besoin d'une GPU capable de gérer les charges de travail les plus exigeantes. Ses caractéristiques impressionnantes et ses performances exceptionnelles en font un atout précieux pour les professionnels dans divers domaines, et il est sûr de répondre aux besoins même des charges de travail les plus exigeantes.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
October 2016
Nom du modèle
Quadro P6000
Génération
Quadro Pascal
Horloge de base
1506MHz
Horloge Boost
1645MHz
Interface de bus
PCIe 3.0 x16
Transistors
11,800 million
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
240
Fonderie
TSMC
Taille de processus
16 nm
Architecture
Pascal

Spécifications de la mémoire

Taille de Mémoire
24GB
Type de Mémoire
GDDR5X
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
384bit
Horloge Mémoire
1127MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
432.8 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
157.9 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
394.8 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
197.4 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
394.8 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
12.377 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
30
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
3840
Cache L1
48 KB (per SM)
Cache L2
3MB
TDP
250W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Connecteurs d'alimentation
1x 8-pin
Modèle de shader
6.7
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
96
Alimentation suggérée
600W

Benchmarks

FP32 (flottant)
Score
12.377 TFLOPS
Blender
Score
859
OctaneBench
Score
185

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
12.883 +4.1%
12.536 +1.3%
12.377
11.189 -9.6%
Blender
2014 +134.5%
379 -55.9%
132 -84.6%
OctaneBench
1328 +617.8%
89 -51.9%
47 -74.6%