NVIDIA P106 090

NVIDIA P106 090

À propos du GPU

La GPU NVIDIA P106 090 est un performeur solide pour les jeux sur ordinateur de bureau et d'autres tâches intensives en graphisme. Avec une horloge de base de 1354MHz et une horloge de boost de 1531MHz, cette GPU offre un gameplay fluide et des temps de rendu rapides pour le design graphique et le montage vidéo. La mémoire GDDR5 de 3 Go et une horloge mémoire de 2002MHz offrent un espace mémoire ample et des taux de transfert de données rapides, garantissant que même les jeux et applications les plus exigeants fonctionnent sans accroc. Les 768 unités de shading et le cache L2 de 1536 Ko améliorent encore la puissance de traitement, permettant des visuels époustouflants et un multitâche fluide. L'une des caractéristiques remarquables de la GPU P106 090 est son faible TDP de 75W, ce qui en fait un choix économe en énergie pour ceux qui cherchent à minimiser la consommation d'énergie et la production de chaleur. Malgré son faible TDP, la GPU parvient toujours à offrir une performance théorique impressionnante de 2,352 TFLOPS, ce qui en fait une option convaincante pour les utilisateurs soucieux de leur budget qui ne veulent pas sacrifier la puissance. Dans l'ensemble, la GPU NVIDIA P106 090 est une option fiable et économique pour les utilisateurs de bureau qui veulent profiter de graphismes de haute qualité et d'une performance fluide sans se ruiner. Sa combinaison d'utilisation efficace de l'énergie, de performances solides et de mémoire ample en fait un choix solide pour un large éventail de besoins en jeux et design graphique.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
July 2017
Nom du modèle
P106 090
Génération
Mining GPUs
Horloge de base
1354MHz
Horloge Boost
1531MHz
Interface de bus
PCIe 3.0 x16

Spécifications de la mémoire

Taille de Mémoire
3GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
192bit
Horloge Mémoire
2002MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
192.2 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
73.49 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
73.49 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
36.74 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
73.49 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
2.305 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
6
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
768
Cache L1
48 KB (per SM)
Cache L2
1536KB
TDP
75W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
2.305 TFLOPS
Vulkan
Score
18660
OpenCL
Score
20338

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
2.33 +1.1%
2.322 +0.7%
2.305
2.285 -0.9%
2.272 -1.4%
Vulkan
19677 +5.5%
18717 +0.3%
18660
18210 -2.4%
17987 -3.6%
OpenCL
21442 +5.4%
20836 +2.4%
20338
19095 -6.1%
18448 -9.3%