NVIDIA H200 NVL
À propos du GPU
La GPU NVIDIA H200 NVL est une véritable puissance conçue pour le calcul haute performance et les applications avancées d'intelligence artificielle, la rendant essentielle pour les professionnels en science des données, apprentissage en profondeur et simulations complexes. Avec une fréquence de base robuste de 1365 MHz et une fréquence de boost atteignant 1785 MHz, les utilisateurs peuvent s'attendre à des performances impressionnantes dans une gamme de tâches exigeantes.
L'une des caractéristiques remarquables de la H200 NVL est sa mémoire colossale de 141 Go HBM3e, qui permet de traiter des ensembles de données massifs avec une rapidité et une efficacité exceptionnelles. La fréquence de la mémoire de 1313 MHz garantit des taux de transfert de données optimaux, offrant une expérience fluide même dans des applications gourmandes en mémoire. Associée à 16896 unités de shading et à un cache L2 généreux de 50 Mo, cette GPU est bien équipée pour gérer des calculs complexes et des graphiques haute résolution.
Offrant une performance théorique de 59,114 TFLOPS, la H200 NVL excelle dans des tâches telles que le ray tracing en temps réel et l'entraînement de modèles d'apprentissage machine à grande échelle, redéfinissant les références de performance dans sa catégorie. Bien que le TDP de 600W puisse nécessiter des solutions de refroidissement adéquates, le compromis est justifié par les capacités de calcul inégalées qu'elle propose.
En conclusion, la GPU NVIDIA H200 NVL se présente comme un choix de premier plan pour les professionnels recherchant des performances inégalées et une technologie de pointe, renforçant la domination d'NVIDIA sur le marché des GPU pour les applications intensives en calcul. Que ce soit pour des projets d'entreprise ou des initiatives de recherche ambitieuses, cette GPU est conçue pour tout gérer.
Basique
Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
November 2024
Nom du modèle
H200 NVL
Génération
Tesla Hopper(Hxx)
Horloge de base
1365 MHz
Horloge Boost
1785 MHz
Interface de bus
PCIe 5.0 x16
Transistors
80 billion
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
528
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
528
Fonderie
TSMC
Taille de processus
5 nm
Architecture
Hopper
Spécifications de la mémoire
Taille de Mémoire
141GB
Type de Mémoire
HBM3e
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
5120bit
Horloge Mémoire
1313 MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
3.36TB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
42.84 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
942.5 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
241.3 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
30.16 TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
59.114
TFLOPS
Divers
Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
132
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
16896
Cache L1
256 KB (per SM)
Cache L2
50 MB
TDP
600W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
N/A
Version OpenCL
3.0
OpenGL
N/A
DirectX
N/A
CUDA
9.0
Connecteurs d'alimentation
8-pin EPS
Modèle de shader
N/A
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
24
Alimentation suggérée
1000 W
Benchmarks
FP32 (flottant)
Score
59.114
TFLOPS
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS