Intel Arc A370M

Intel Arc A370M

À propos du GPU

L'Intel Arc A370M est une nouvelle entrée sur le marché des GPU mobiles, et elle est dotée de spécifications impressionnantes. Avec une fréquence de base de 300 MHz et une fréquence de boost de 1550 MHz, le A370M offre beaucoup de puissance pour les jeux et d'autres tâches graphiques intensives. Les 4 Go de mémoire GDDR6 et une fréquence de mémoire de 1750 MHz contribuent également à ses performances globales, tandis qu'une consommation électrique de 35W garantit qu'il ne videra pas rapidement la batterie de votre ordinateur portable. Avec 1024 unités de shader et 4 Mo de mémoire cache L2, le A370M est capable de gérer une large gamme de tâches graphiques, du jeu au montage vidéo. Ses performances théoriques de 3,174 TFLOPS et un score 3DMark Time Spy de 3421 démontrent également ses capacités. Dans une utilisation réelle, le A370M offre des performances de jeu fluides et sans latence sur une variété de titres modernes. Il gère également facilement les tâches de montage vidéo et de rendu, ce qui en fait une option polyvalente à la fois pour les joueurs et les créateurs de contenu. Le A370M prend également en charge des fonctionnalités modernes telles que le ray tracing et les performances améliorées par l'IA, renforçant encore sa valeur. Dans l'ensemble, l'Intel Arc A370M est une solide entrée sur le marché des GPU mobiles, offrant des performances impressionnantes et un ensemble de fonctionnalités solide. Que vous soyez un joueur ou un créateur de contenu, le A370M vaut vraiment la peine d'être pris en compte pour votre prochain ordinateur portable.

Basique

Nom de l'étiquette
Intel
Plate-forme
Mobile
Date de lancement
March 2022
Nom du modèle
Arc A370M
Génération
Alchemist
Horloge de base
300MHz
Horloge Boost
1550MHz
Interface de bus
PCIe 4.0 x8

Spécifications de la mémoire

Taille de Mémoire
4GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1750MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
112.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
49.60 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
99.20 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
6.349 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
793.6 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
3.237 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1024
Cache L2
4MB
TDP
35W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
3.237 TFLOPS
3DMark Time Spy
Score
3489

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
3.249 +0.4%
3.246 +0.3%
3.237
3.231 -0.2%
3.196 -1.3%
3DMark Time Spy
3521 +0.9%
3489
3421 -1.9%