NVIDIA RTX A4500 Embedded

NVIDIA RTX A4500 Embedded

À propos du GPU

Le GPU embarqué NVIDIA RTX A4500 est une impressionnante addition à la plateforme professionnelle, offrant des performances élevées et des fonctionnalités avancées pour une large gamme d'applications. Avec une fréquence de base de 930MHz et une fréquence de boost de 1500MHz, ce GPU offre une vitesse et une réactivité exceptionnelles, en en faisant un choix idéal pour les tâches exigeantes telles que le rendu 3D, la réalité virtuelle et l'informatique haute performance. L'une des caractéristiques remarquables du RTX A4500 est sa généreuse mémoire de 16 Go de GDDR6, offrant une capacité suffisante pour manipuler de grands ensembles de données et des simulations complexes. La fréquence mémoire de 2000MHz assure un accès et un transfert rapides des données, tandis que les 5888 unités de shading et les 4 Mo de cache L2 contribuent à un rendu fluide des graphiques et des effets visuels. Malgré ses performances impressionnantes, le RTX A4500 est également conçu dans une optique d'efficacité énergétique, avec une TDP de 115W. Cela en fait un choix convaincant pour les applications où la consommation d'énergie est une préoccupation, telles que les systèmes embarqués et l'informatique périphérique. Avec une performance théorique de 17,66 TFLOPS, le RTX A4500 est bien équipé pour relever les charges de travail computationnelles les plus exigeantes avec facilité. Que vous soyez un designer, un ingénieur ou un scientifique professionnel, ce GPU offre les performances et la fiabilité nécessaires pour concrétiser vos idées. Dans l'ensemble, le GPU embarqué NVIDIA RTX A4500 est une solution puissante pour les professionnels à la recherche de performances de premier ordre, d'efficacité et de polyvalence dans un seul et même package.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Nom du modèle
RTX A4500 Embedded
Génération
Quadro Mobile
Horloge de base
930MHz
Horloge Boost
1500MHz
Interface de bus
PCIe 4.0 x16

Spécifications de la mémoire

Taille de Mémoire
16GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
2000MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
512.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
120.0 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
276.0 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
17.66 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
552.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
17.307 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
46
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
5888
Cache L1
128 KB (per SM)
Cache L2
4MB
TDP
115W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
17.307 TFLOPS
Blender
Score
4330
OctaneBench
Score
475

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
17.615 +1.8%
17.544 +1.4%
16.993 -1.8%
16.932 -2.2%
Blender
4549 +5.1%
L40
4336 +0.1%
4223 -2.5%
OctaneBench
526 +10.7%
515 +8.4%