NVIDIA H200 NVL

NVIDIA H200 NVL

Über GPU

Die NVIDIA H200 NVL GPU ist ein Kraftpaket, das für Hochleistungsrechner und fortgeschrittene KI-Anwendungen entwickelt wurde, und stellt somit eine unverzichtbare Ressource für Fachleute in den Bereichen Datenwissenschaft, Deep Learning und komplexe Simulationen dar. Mit einer robusten Basis-Taktfrequenz von 1365 MHz und einer Boost-Taktfrequenz von bis zu 1785 MHz können Benutzer beeindruckende Leistungen bei einer Vielzahl anspruchsvoller Aufgaben erwarten. Eine der herausragenden Eigenschaften der H200 NVL ist ihr kolossaler HBM3e-Speicher mit 141 GB, der es ermöglicht, massive Datensätze mit außergewöhnlicher Geschwindigkeit und Effizienz zu verarbeiten. Die Taktfrequenz des Speichers von 1313 MHz sorgt dafür, dass die Datenübertragungsraten optimal sind, was ein nahtloses Erlebnis auch in speicherintensiven Anwendungen bietet. Kombiniert mit 16896 Shading-Einheiten und einem großzügigen L2-Cache von 50 MB ist diese GPU bestens gerüstet, um komplexe Berechnungen und hochauflösende Grafiken zu bewältigen. Mit einer theoretischen Leistung von 59,114 TFLOPS glänzt die H200 NVL bei Aufgaben wie Echtzeit-Raytracing und dem Training von großen Machine-Learning-Modellen und setzt neue Leistungsbenchmarks in ihrer Klasse. Obwohl der TDP von 600W angemessene Kühllösungen erfordert, wird dieser Kompromiss durch die unvergleichlichen Berechnungsfähigkeiten, die sie bietet, gerechtfertigt. Zusammenfassend lässt sich sagen, dass die NVIDIA H200 NVL GPU eine erstklassige Wahl für Fachleute ist, die unvergleichliche Leistung und modernste Technologie suchen, und die Dominanz von NVIDIA im GPU-Markt für rechenintensive Anwendungen untermauert. Ob für Projekte auf Unternehmensebene oder ehrgeizige Forschungsinitiativen, diese GPU ist so konstruiert, dass sie alles bewältigen kann.

Basic

Markenname
NVIDIA
Plattform
Desktop
Erscheinungsdatum
November 2024
Modellname
H200 NVL
Generation
Tesla Hopper(Hxx)
Basis-Takt
1365 MHz
Boost-Takt
1785 MHz
Bus-Schnittstelle
PCIe 5.0 x16
Transistoren
80 billion
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
528
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
528
Foundry
TSMC
Prozessgröße
5 nm
Architektur
Hopper

Speicherspezifikationen

Speichergröße
141GB
Speichertyp
HBM3e
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
5120bit
Speichertakt
1313 MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
3.36TB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
42.84 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
942.5 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
241.3 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
30.16 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
59.114 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
132
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
16896
L1-Cache
256 KB (per SM)
L2-Cache
50 MB
TDP (Thermal Design Power)
600W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
N/A
OpenCL-Version
3.0
OpenGL
N/A
DirectX
N/A
CUDA
9.0
Stromanschlüsse
8-pin EPS
Shader-Modell
N/A
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
24
Empfohlene PSU (Stromversorgung)
1000 W

Benchmarks

FP32 (float)
Punktzahl
59.114 TFLOPS

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
65.572 +10.9%
59.114
49.715 -15.9%