NVIDIA A100 SXM4 40 GB

NVIDIA A100 SXM4 40 GB

Über GPU

Die NVIDIA A100 SXM4 40GB GPU ist eine leistungsstarke professionelle Rechenplattform, die eine außergewöhnliche Leistung für eine Vielzahl anspruchsvoller Workloads bietet. Mit einer Basis-Taktfrequenz von 1095MHz und einer Boost-Taktfrequenz von 1410MHz liefert diese GPU hohe Verarbeitungsleistung, um komplexe Aufgaben mühelos zu bewältigen. Eine herausragende Funktion der A100 SXM4 40GB GPU ist ihre große 40GB Speichergröße, die von der High-Bandwidth HBM2e-Speichertechnologie unterstützt wird. Mit einer Speichertaktfrequenz von 1215MHz und einem massiven 40MB L2-Cache kann diese GPU große Datensätze effizient verwalten und verarbeiten, was sie ideal für datenintensive Anwendungen wie KI, maschinelles Lernen und wissenschaftliche Simulationen macht. Die A100 SXM4 40GB GPU ist mit 6912 Schattierungseinheiten ausgestattet, was es ihr ermöglicht, fortgeschrittene Rendering- und Grafikaufgaben präzise und schnell zu erledigen. Darüber hinaus bietet diese GPU bei einer TDP von 400W und einer theoretischen Leistung von 19,49 TFLOPS beeindruckende Energieeffizienz und Rechenkapazität. Insgesamt ist die NVIDIA A100 SXM4 40GB GPU eine ausgezeichnete Wahl für Fachleute, die eine Spitzenleistung für ihre Workloads benötigen. Egal, ob es sich um das Entwerfen komplexer Visualisierungen, das Trainieren von Deep-Learning-Modellen oder das Ausführen von Hochleistungsrechen-Simulationen handelt, diese GPU bietet die Leistung und Effektivität, um die anspruchsvollsten Aufgaben zu bewältigen.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
May 2020
Modellname
A100 SXM4 40 GB
Generation
Tesla
Basis-Takt
1095MHz
Boost-Takt
1410MHz
Bus-Schnittstelle
PCIe 4.0 x16
Transistoren
54,200 million
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
432
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
432
Foundry
TSMC
Prozessgröße
7 nm
Architektur
Ampere

Speicherspezifikationen

Speichergröße
40GB
Speichertyp
HBM2e
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
5120bit
Speichertakt
1215MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
1555 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
225.6 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
609.1 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
77.97 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
9.746 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
19.1 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
108
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
6912
L1-Cache
192 KB (per SM)
L2-Cache
40MB
TDP (Thermal Design Power)
400W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
N/A
OpenCL-Version
3.0
OpenGL
N/A
DirectX
N/A
CUDA
8.0
Stromanschlüsse
None
Shader-Modell
N/A
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
160
Empfohlene PSU (Stromversorgung)
800W

Benchmarks

FP32 (float)
Punktzahl
19.1 TFLOPS
Blender
Punktzahl
2230
OctaneBench
Punktzahl
515

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
21.58 +13%
20.325 +6.4%
18.38 -3.8%
16.797 -12.1%
Blender
12832 +475.4%
2669 +19.7%
521 -76.6%
203 -90.9%
OctaneBench
1328 +157.9%
163 -68.3%
89 -82.7%
47 -90.9%