NVIDIA GeForce GTX 1050 Ti Max Q

NVIDIA GeForce GTX 1050 Ti Max Q

Acerca del GPU

La NVIDIA GeForce GTX 1050 Ti Max Q es una GPU móvil que ofrece un rendimiento impresionante para su tamaño y requisitos de energía. Con una velocidad base de reloj de 1152MHz y una velocidad de reloj de impulso de 1291MHz, esta GPU es capaz de ofrecer gráficos rápidos y suaves para juegos y otras aplicaciones intensivas en gráficos. Los 4GB de memoria GDDR5 y una velocidad de reloj de memoria de 1752MHz proporcionan un ancho de banda de memoria amplio para manejar texturas de alta resolución y sombreadores complejos. Con 768 unidades de sombreado y 1024KB de caché L2, la GTX 1050 Ti Max Q es capaz de manejar una amplia variedad de tareas gráficas con facilidad. Uno de los aspectos más impresionantes de esta GPU es su eficiencia energética. Con un TDP de solo 75W, la GTX 1050 Ti Max Q es capaz de ofrecer un rendimiento sólido mientras genera un calor y ruido mínimos. Esto la convierte en una excelente opción para computadoras portátiles delgadas y livianas que priorizan la portabilidad sin sacrificar el rendimiento gráfico. En cuanto al rendimiento real, la GTX 1050 Ti Max Q es capaz de ofrecer hasta 1.983 TFLOPS de rendimiento teórico, lo que la hace adecuada para juegos a 1080p e incluso algunos juegos ligeros a 1440p con configuraciones medias a altas. En general, la NVIDIA GeForce GTX 1050 Ti Max Q es una opción sólida para cualquier persona que necesite una GPU potente, pero eficiente en cuanto a energía, para su computadora portátil. Ya sea para juegos, creación de contenido o trabajo gráfico en general, la GTX 1050 Ti Max Q ofrece un gran equilibrio entre rendimiento y eficiencia.

Básico

Nombre de Etiqueta
NVIDIA
Plataforma
Mobile
Fecha de Lanzamiento
January 2018
Nombre del modelo
GeForce GTX 1050 Ti Max Q
Generación
GeForce 10 Mobile
Reloj base
1152MHz
Reloj de impulso
1291MHz
Interfaz de bus
PCIe 3.0 x16
Transistores
3,300 million
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
48
Fundición
Samsung
Tamaño proceso
14 nm
Arquitectura
Pascal

Especificaciones de Memoria

Tamaño de memoria
4GB
Tipo de memoria
GDDR5
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
128bit
Reloj de memoria
1752MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
112.1 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
41.31 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
61.97 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
30.98 GFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
61.97 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
1.943 TFLOPS

Misceláneos

Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
6
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
768
Caché L1
48 KB (per SM)
Caché L2
1024KB
TDP
75W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Conectores de alimentación
None
Modelo de sombreado
6.4
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
32

Clasificaciones

FP32 (flotante)
Puntaje
1.943 TFLOPS
Blender
Puntaje
198
OctaneBench
Puntaje
45

Comparado con Otras GPU

FP32 (flotante) / TFLOPS
2.021 +4%
1.918 -1.3%
1.856 -4.5%
Blender
1661 +738.9%
A2
883.68 +346.3%
445 +124.7%