AMD Radeon RX 6700S

AMD Radeon RX 6700S

About GPU

The AMD Radeon RX 6700S is a powerful GPU designed for mobile platforms, offering impressive specifications and performance capabilities. With a base clock of 1700MHz and a boost clock of 2000MHz, this GPU is capable of handling demanding tasks and delivering smooth, high-quality graphics in games and professional applications. The 8GB of GDDR6 memory and a memory clock of 1750MHz ensure fast and efficient performance, allowing users to run intensive programs and games without experiencing lag or slowdowns. With 1792 shading units and 2MB of L2 cache, the GPU is optimized for rendering detailed and complex visuals with precision and speed. One of the standout features of the AMD Radeon RX 6700S is its relatively low TDP of 80W, which means it is power-efficient and suitable for use in laptops and portable devices without sacrificing performance. The theoretical performance of 7.168 TFLOPS and a 3DMark Time Spy score of 7852 further underscore the GPU's capability to deliver high frame rates and smooth gameplay experiences. Overall, the AMD Radeon RX 6700S is a compelling choice for users in need of a high-performance mobile GPU. Its impressive specifications, power efficiency, and strong performance make it a worthy option for gaming, content creation, and professional applications. Whether you're a gamer or a professional looking for a reliable and capable mobile GPU, the RX 6700S is definitely worth considering.

Basic

Label Name
AMD
Platform
Mobile
Launch Date
January 2022
Model Name
Radeon RX 6700S
Generation
Mobility Radeon
Base Clock
1700MHz
Boost Clock
2000MHz
Bus Interface
PCIe 4.0 x8

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
128.0 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
224.0 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
14.34 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
448.0 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
7.311 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
L1 Cache
128 KB per Array
L2 Cache
2MB
TDP
80W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1

Benchmarks

FP32 (float)
Score
7.311 TFLOPS
3DMark Time Spy
Score
8009
Blender
Score
900
Vulkan
Score
69708
OpenCL
Score
62821

Compared to Other GPU

FP32 (float) / TFLOPS
7.316 +0.1%
7.311 +0%
7.261 -0.7%
7.207 -1.4%
3DMark Time Spy
8014 +0.1%
7975 -0.4%
7905 -1.3%
Blender
927 +3%
896 -0.4%
896 -0.4%
Vulkan
71147 +2.1%
69675 -0%
66795 -4.2%
OpenCL
63099 +0.4%
62379 -0.7%
61570 -2%