NVIDIA GeForce RTX 3060 8 GB GA104

NVIDIA GeForce RTX 3060 8 GB GA104

À propos du GPU

La carte graphique NVIDIA GeForce RTX 3060 8GB GA104 GPU est une carte puissante qui offre un excellent équilibre entre performances et rapport qualité-prix pour les jeux sur ordinateur de bureau et la création de contenu. Avec une fréquence de base de 1320MHz et une fréquence de boost de 1777MHz, la RTX 3060 offre des performances fluides et constantes dans une large gamme de jeux et d'applications modernes. Les 8 Go de mémoire GDDR6 et une fréquence mémoire de 1875MHz garantissent que le GPU dispose d'une bande passante mémoire suffisante pour gérer des textures haute résolution et des scènes complexes, en en faisant un excellent choix pour les joueurs et les professionnels de la création. Les 3584 unités de traitement et 3 Mo de cache L2 contribuent également aux capacités de rendu du GPU, offrant des visuels nets et détaillés. Malgré ses performances impressionnantes, la RTX 3060 est également relativement économe en énergie, avec une consommation électrique de 195W. Cela signifie qu'elle peut être utilisée dans une large gamme de systèmes de bureau sans nécessiter une alimentation électrique surdimensionnée ou coûteuse. Avec une performance théorique de 12,74 TFLOPS, la RTX 3060 est bien adaptée pour le jeu en 1080p et 1440p, ainsi que pour le jeu en 4K de niveau d'entrée avec certains paramètres ajustés. Elle excelle également dans les tâches de création de contenu telles que le montage vidéo et le rendu 3D. En conclusion, la carte graphique NVIDIA GeForce RTX 3060 8GB GA104 offre d'excellentes performances, une quantité généreuse de mémoire et une efficacité énergétique, en en faisant un excellent choix pour les joueurs et les créateurs de contenu à la recherche d'une carte graphique haute performance mais accessible.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Date de lancement
October 2022
Nom du modèle
GeForce RTX 3060 8 GB GA104
Génération
GeForce 30
Horloge de base
1320MHz
Horloge Boost
1777MHz
Interface de bus
PCIe 4.0 x16

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1875MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
240.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
113.7 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
199.0 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
12.74 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
199.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
12.995 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
28
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
3584
Cache L1
128 KB (per SM)
Cache L2
3MB
TDP
195W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
12.995 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
13.044 +0.4%
12.995 +0%
12.946 -0.4%
12.946 -0.4%