Intel Arc B580

Intel Arc B580

À propos du GPU

La puce graphique Intel Arc B580 est une carte graphique puissante et performante conçue pour les ordinateurs de bureau. Avec une fréquence de base de 1700 MHz et une fréquence de suralimentation de 2800 MHz, cette puce graphique offre une vitesse et des performances impressionnantes pour des tâches exigeantes telles que les jeux, la création de contenu et les applications professionnelles. Les 12 Go de mémoire GDDR6 et une fréquence de mémoire de 2400 MHz garantissent des performances fluides et sans décalage, même lors du traitement de jeux de données volumineux et complexes. Les 2560 unités de traitement et les 12 Mo de mémoire cache L2 contribuent également à la capacité de la puce graphique à gérer facilement des charges de travail graphiques intensives. Avec une consommation électrique de 175 W, la puce graphique Intel Arc B580 trouve un bon équilibre entre la consommation d'énergie et les performances, ce qui la rend adaptée à une large gamme de systèmes de bureau. Les performances théoriques de 14,053 TFLOPS mettent en valeur les capacités de la puce graphique en matière de calculs et de rendus visuels complexes. Globallement, la puce graphique Intel Arc B580 est un choix convaincant pour les utilisateurs qui ont besoin de graphismes haute performance pour leurs systèmes de bureau. Que ce soit pour les jeux, le travail créatif ou les applications professionnelles, cette puce graphique offre la vitesse, la puissance et l'efficacité nécessaires pour relever des tâches exigeantes. Ses spécifications robustes et ses performances impressionnantes en font un concurrent de valeur sur le marché des puces graphiques de bureau.

Basique

Nom de l'étiquette
Intel
Plate-forme
Desktop
Date de lancement
December 2024
Nom du modèle
Arc B580
Génération
Battlemage(Arc 5)
Horloge de base
1700 MHz
Horloge Boost
2800 MHz
Interface de bus
PCIe 4.0 x8
Transistors
21.7 billion
Cœurs RT
20
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
320
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
160
Fonderie
TSMC
Taille de processus
6 nm
Architecture
Generation 12.7

Spécifications de la mémoire

Taille de Mémoire
12GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
192bit
Horloge Mémoire
2400 MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
460.8GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
224.0 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
448.0 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
28.67 TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
14.053 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2560
Cache L2
12 MB
TDP
175W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Connecteurs d'alimentation
2x 8-pin
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
80
Alimentation suggérée
450 W

Benchmarks

FP32 (flottant)
Score
14.053 TFLOPS
Blender
Score
1813.5

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
15.412 +9.7%
14.602 +3.9%
14.053
13.474 -4.1%
13.142 -6.5%
Blender
8341.45 +360%
1813.5
900 -50.4%
479 -73.6%