NVIDIA RTX 4000 Mobile Ada Generation

NVIDIA RTX 4000 Mobile Ada Generation

Acerca del GPU

La NVIDIA RTX 4000 Mobile Ada Generation GPU es una impresionante adición a la línea RTX, ofreciendo un rendimiento de alta gama y características avanzadas para usuarios móviles. Con una frecuencia base de 1290MHz y una frecuencia turbo de 1665MHz, esta GPU ofrece una velocidad y capacidad de respuesta excepcionales para tareas exigentes como gaming, renderizado 3D y edición de vídeo. Una de las características más destacadas del RTX 4000 Mobile es su generosa memoria de 12GB de GDDR6, que proporciona un amplio almacenamiento para texturas de alta resolución y escenas complejas. La frecuencia de memoria de 2250MHz garantiza un acceso rápido a esta memoria, mejorando aún más el rendimiento general. Con 7424 unidades de sombreado y un sustancial caché L2 de 48MB, esta GPU destaca en el manejo de cálculos complejos y cargas de trabajo gráficas. A pesar de su impresionante rendimiento, el RTX 4000 Mobile mantiene un perfil de consumo de energía razonable, con un TDP de 110W. Esto lo hace adecuado para su uso en una amplia gama de laptops y estaciones de trabajo móviles sin sacrificar la vida útil de la batería o generar un calor excesivo. En general, el rendimiento teórico de 24.72 TFLOPS hace que la NVIDIA RTX 4000 Mobile Ada Generation GPU sea una opción convincente para usuarios que requieren capacidades gráficas de alta gama sobre la marcha. Ya sea para gaming, creación de contenido o trabajo de diseño profesional, esta GPU ofrece la potencia y eficiencia necesarias para manejar tareas exigentes con facilidad.

Básico

Nombre de Etiqueta
NVIDIA
Plataforma
Mobile
Fecha de Lanzamiento
March 2023
Nombre del modelo
RTX 4000 Mobile Ada Generation
Generación
Quadro Ada-M
Reloj base
1290MHz
Reloj de impulso
1665MHz
Interfaz de bus
PCIe 4.0 x16
Transistores
35,800 million
Núcleos RT
58
Núcleos tensor
?
Los Tensor Cores son unidades de procesamiento especializadas diseñadas específicamente para el aprendizaje profundo, proporcionando un rendimiento de entrenamiento e inferencia más alto en comparación con el entrenamiento FP32. Permiten cálculos rápidos en áreas como la visión por computadora, el procesamiento del lenguaje natural, el reconocimiento de voz, la conversión de texto a voz y las recomendaciones personalizadas. Las dos aplicaciones más destacadas de los Tensor Cores son DLSS (Deep Learning Super Sampling) y AI Denoiser para la reducción de ruido.
232
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
232
Fundición
TSMC
Tamaño proceso
5 nm
Arquitectura
Ada Lovelace

Especificaciones de Memoria

Tamaño de memoria
12GB
Tipo de memoria
GDDR6
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
192bit
Reloj de memoria
2250MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
432.0 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
133.2 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
386.3 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
24.72 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
386.3 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
25.214 TFLOPS

Misceláneos

Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
58
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
7424
Caché L1
128 KB (per SM)
Caché L2
48MB
TDP
110W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Conectores de alimentación
None
Modelo de sombreado
6.7
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
80

Clasificaciones

FP32 (flotante)
Puntaje
25.214 TFLOPS
Blender
Puntaje
5163

Comparado con Otras GPU

FP32 (flotante) / TFLOPS
29.733 +17.9%
23.083 -8.5%
Blender
12832 +148.5%
1222 -76.3%
521 -89.9%
203 -96.1%