Intel Iris Xe Graphics G7 96EU

Intel Iris Xe Graphics G7 96EU

Über GPU

Die Intel Iris Xe Graphics G7 96EU GPU ist eine integrierte Grafiklösung, die mit ihrer Leistung und Energieeffizienz beeindruckt hat. Mit einer Basisfrequenz von 300 MHz und einer Boost-Frequenz von 1100 MHz liefert diese GPU eine reibungslose und nahtlose Grafikdarstellung für eine Vielzahl von Aufgaben, einschließlich Gaming, Content-Erstellung und Multimedia-Konsum. Eine der herausragenden Eigenschaften der Intel Iris Xe Graphics G7 96EU GPU ist ihr beeindruckender 3DMark Time Spy-Score von 1294, der ihre Fähigkeit zeigt, moderne 3D-Spiele und Anwendungen relativ problemlos zu bewältigen. Die 768 Shader-Einheiten und 1024 KB L2-Cache tragen ebenfalls zu ihrer starken Leistung bei und ermöglichen eine klare und detailreiche visuelle Ausgabe. Trotz ihrer integrierten Lösung mit gemeinsam genutztem Systemspeicher erreicht die Iris Xe Graphics G7 96EU GPU eine lobenswerte theoretische Leistung von 1,69 TFLOPs, was sie für eine Vielzahl von Aufgaben ohne Kompromisse bei der Effizienz geeignet macht. Darüber hinaus bietet diese GPU mit einer TDP von 15W eine gute Balance zwischen Leistung und Stromverbrauch und ist somit gut geeignet für Laptops und kompakte Desktop-Systeme. Insgesamt ist die Intel Iris Xe Graphics G7 96EU GPU eine überzeugende Option für Benutzer, die eine leistungsfähige integrierte Grafiklösung benötigen. Ihre starke Leistung, Energieeffizienz und Kompatibilität mit einer Vielzahl von Anwendungen machen sie zu einer lohnenswerten Wahl für alle, die eine solide Grafikleistung in einem kompakten und energieeffizienten Paket benötigen.

Basic

Markenname
Intel
Plattform
Integrated
Erscheinungsdatum
September 2020
Modellname
Iris Xe Graphics G7 96EU
Generation
HD Graphics-M
Basis-Takt
300MHz
Boost-Takt
1100MHz
Bus-Schnittstelle
Ring Bus

Speicherspezifikationen

Speichergröße
System Shared
Speichertyp
System Shared
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
System Shared
Speichertakt
SystemShared
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
System Dependent

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
26.40 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
52.80 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
3.379 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
422.4 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1.656 TFLOPS

Verschiedenes

Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
768
L2-Cache
1024KB
TDP (Thermal Design Power)
15W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0

Benchmarks

FP32 (float)
Punktzahl
1.656 TFLOPS
3DMark Time Spy
Punktzahl
1268

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
1.675 +1.1%
1.671 +0.9%
1.647 -0.5%
1.645 -0.7%
3DMark Time Spy
1295 +2.1%
1285 +1.3%
1262 -0.5%