NVIDIA RTX 2000 Mobile Ada Generation

NVIDIA RTX 2000 Mobile Ada Generation

О видеокарте

Графический процессор NVIDIA RTX 2000 Mobile Ada Generation - это настоящая мощь в мире ноутбуков, обладая впечатляющими характеристиками, делающими его одним из лучших в своем классе. С базовой частотой в 1635 МГц и ускоренной частотой в 2115 МГц, этот GPU обеспечивает невероятную скорость и производительность, обеспечивая плавный и бесперебойный игровой процесс и графические задачи. 8 ГБ видеопамяти GDDR6 и частота памяти в 2000 МГц гарантируют легкость обработки самых требовательных приложений. 3072 шейдерных блока и 12 МБ кэш-памяти L2 дополнительно улучшают возможности GPU, обеспечивая отличное качество визуализации и обработки. Более того, с TDP в 50 Вт, этот GPU удивительно эффективен. Теоретическая производительность в 12,99 TFLOPS говорит о его колоссальной мощности. GPU RTX 2000 Mobile Ada Generation - отличный выбор для геймеров, создателей контента и профессионалов, которым нужна высокопроизводительная графическая карта для их ноутбуков. Он предлагает исключительную производительность, эффективность и надежность, что делает его надежным инвестицией для тех, кто нуждается в первоклассных графических возможностях на ходу. Будь то игры, 3D-моделирование, видеомонтаж или любые другие графические задачи, этот GPU способен справиться со всем без труда. В целом, NVIDIA RTX 2000 Mobile Ada Generation GPU - превосходный выбор для тех, кто нуждается в бескомпромиссной графической производительности в мобильном формате.

Общая информация

Производитель
NVIDIA
Платформа
Mobile
Дата выпуска
March 2023
Название модели
RTX 2000 Mobile Ada Generation
Поколение
Quadro Ada-M
Базоввая частота
1635MHz
Boost Частота
2115MHz
Интерфейс шины
PCIe 4.0 x16
Транзисторы
Unknown
RT ядра
24
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
96
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
96
Производитель
TSMC
Размер процесса
5 nm
Архитектура
Ada Lovelace

Характеристики памяти

Объем памяти
8GB
Тип памяти
GDDR6
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
128bit
Частота памяти
2000MHz
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
256.0 GB/s

Теоретическая производительность

Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
101.5 GPixel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
203.0 GTexel/s
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
12.99 TFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
203.0 GFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
13.25 TFLOPS

Другое

Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
24
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
3072
Кэш L1
128 KB (per SM)
Кэш L2
12MB
TDP
50W
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
Версия OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Разъемы питания
None
Шейдерная модель
6.7
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
48

Бенчмарки

FP32 (float)
13.25 TFLOPS
3DMark Time Spy
7124
Blender
2804

По сравнению с другими GPU

FP32 (float) / TFLOPS
14.209 +7.2%
13.678 +3.2%
12.946 -2.3%
12.603 -4.9%
3DMark Time Spy
11433 +60.5%
9090 +27.6%
4864 -31.7%
3754 -47.3%
Blender
12832 +357.6%
1222 -56.4%
521 -81.4%
203 -92.8%