NVIDIA T500 Mobile

NVIDIA T500 Mobile

À propos du GPU

La GPU mobile NVIDIA T500 est une unité de traitement graphique puissante et efficace conçue pour les appareils mobiles. Avec une vitesse d'horloge de base de 1365 MHz et une vitesse d'horloge de boost de 1695 MHz, cette GPU offre des performances impressionnantes pour les jeux, la création de contenu et d'autres tâches intensives en graphismes. L'une des caractéristiques remarquables de la T500 est ses 2 Go de mémoire GDDR6. Cette mémoire à haute vitesse, avec une vitesse d'horloge de 1250 MHz, garantit des performances fluides et sans lag, même lors de l'exécution d'applications ou de jeux exigeants. La GPU dispose également de 896 unités de ombrage et de 1024 Ko de mémoire cache L2, améliorant davantage ses capacités et assurant un traitement rapide et efficace. Malgré ses performances impressionnantes, la T500 est également remarquablement économe en énergie, avec une puissance thermique de conception (TDP) de seulement 18W. Cela signifie qu'elle peut offrir des performances graphiques haut de gamme sans vider la batterie des appareils mobiles. En termes de performances globales, la T500 est capable de fournir une performance théorique de 3,037 TFLOPS. Cela la rend bien adaptée pour gérer les titres de jeux modernes et les logiciels créatifs exigeants, offrant aux utilisateurs une expérience fluide et immersive. En fin de compte, la GPU mobile NVIDIA T500 est une option de premier plan pour toute personne ayant besoin d'une solution graphique haute performance pour son appareil mobile. Sa combinaison de performances puissantes, de conception efficace et de mémoire à haute vitesse en fait un choix de prédilection pour les joueurs, les créateurs de contenu et les professionnels.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Mobile
Date de lancement
December 2020
Nom du modèle
T500 Mobile
Génération
Quadro Mobile
Horloge de base
1365MHz
Horloge Boost
1695MHz
Interface de bus
PCIe 3.0 x16
Transistors
4,700 million
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
56
Fonderie
TSMC
Taille de processus
12 nm
Architecture
Turing

Spécifications de la mémoire

Taille de Mémoire
2GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1250MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
80.00 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
54.24 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
94.92 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
6.075 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
94.92 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
3.098 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
14
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
896
Cache L1
64 KB (per SM)
Cache L2
1024KB
TDP
18W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.5
Connecteurs d'alimentation
None
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32

Benchmarks

FP32 (flottant)
Score
3.098 TFLOPS
Blender
Score
247

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
3.337 +7.7%
3.246 +4.8%
3.098
3.02 -2.5%
Blender
1661 +572.5%
A2
883.68 +257.8%
445 +80.2%
62 -74.9%