NVIDIA Quadro P4200 Mobile

NVIDIA Quadro P4200 Mobile

À propos du GPU

La carte graphique mobile NVIDIA Quadro P4200 est une solution graphique professionnelle puissante et efficace. Avec une vitesse d'horloge de base de 1227MHz et une vitesse d'horloge de boost de 1647MHz, cette carte graphique offre des performances impressionnantes pour des applications professionnelles telles que le rendu 3D, la conception CAO et le montage vidéo. Les 8 Go de mémoire GDDR5 et une vitesse d'horloge mémoire de 1502MHz garantissent un fonctionnement fluide et réactif, même lors du travail avec des ensembles de données volumineux et complexes. Les 2304 unités de shading et 2 Mo de cache L2 améliorent encore les capacités de la carte graphique, permettant d'effectuer des calculs complexes et des tâches de rendu avec rapidité et précision. Avec une consommation d'énergie de 100W, la Quadro P4200 offre un bon équilibre entre la consommation d'énergie et les performances, ce qui la rend adaptée à une utilisation dans des stations de travail mobiles. Les performances théoriques de 7,589 TFLOPS garantissent que cette carte graphique peut gérer facilement des charges de travail professionnelles exigeantes, offrant la puissance de calcul nécessaire pour fournir un contenu visuel de haute qualité. En résumé, la carte graphique mobile NVIDIA Quadro P4200 est un choix de premier plan pour les professionnels qui ont besoin d'une solution graphique performante pour leurs stations de travail mobiles. Ses spécifications impressionnantes, son efficacité énergétique et ses performances fiables la rendent adaptée à un large éventail d'applications professionnelles, et c'est un investissement solide pour quiconque a besoin d'une carte graphique mobile performante.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
February 2018
Nom du modèle
Quadro P4200 Mobile
Génération
Quadro Mobile
Horloge de base
1227MHz
Horloge Boost
1647MHz
Interface de bus
MXM-B (3.0)

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
1502MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
192.3 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
105.4 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
237.2 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
118.6 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
237.2 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
7.437 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
18
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2304
Cache L1
48 KB (per SM)
Cache L2
2MB
TDP
100W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
7.437 TFLOPS
Blender
Score
550

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
7.451 +0.2%
7.395 -0.6%