AMD Radeon PRO W7500

AMD Radeon PRO W7500

À propos du GPU

La carte graphique AMD Radeon PRO W7500 est puissante et efficace, conçue pour une utilisation de bureau. Avec une fréquence de base de 1500MHz et une fréquence de boost de 1700MHz, cette carte graphique est capable de gérer facilement les tâches graphiques exigeantes. Les 8 Go de mémoire GDDR6 et une fréquence de mémoire de 1344MHz garantissent des performances fluides même lors de travaux avec de gros fichiers ou l'exécution d'applications gourmandes en ressources. Avec 1792 unités de traitement et 2 Mo de cache L2, la Radeon PRO W7500 offre une qualité visuelle et des détails impressionnants, en en faisant un excellent choix pour les professionnels travaillant dans des industries telles que l'architecture, l'ingénierie et le design. La carte graphique a une consommation électrique de 70W, la rendant économe en énergie et idéale pour une utilisation dans des postes de travail ou des PC de bureau. En termes de performances, la Radeon PRO W7500 n'est pas en reste, avec une performance théorique de 12,19 TFLOPS. Cela la rend adaptée à un large éventail de tâches professionnelles, telles que le rendu 3D, le montage vidéo et la conception graphique. Dans l'ensemble, la carte graphique AMD Radeon PRO W7500 offre une combinaison convaincante de puissance, d'efficacité et de performances. Ses caractéristiques impressionnantes en font un choix de premier ordre pour les professionnels ayant besoin de capacités graphiques fiables et performantes. Que vous soyez créateur de contenu, designer ou ingénieur, la Radeon PRO W7500 est un investissement solide pour votre poste de travail.

Basique

Nom de l'étiquette
AMD
Plate-forme
Desktop
Date de lancement
August 2023
Nom du modèle
Radeon PRO W7500
Génération
Radeon Pro Navi
Horloge de base
1500MHz
Horloge Boost
1700MHz
Interface de bus
PCIe 4.0 x8

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1344MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
172.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
108.8 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
190.4 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
24.37 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
380.8 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
11.946 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1792
Cache L1
128 KB per Array
Cache L2
2MB
TDP
70W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.2

Benchmarks

FP32 (flottant)
Score
11.946 TFLOPS
Blender
Score
896

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
11.985 +0.3%
11.907 -0.3%
Blender
900 +0.4%
896 -0%
889 -0.8%