NVIDIA TITAN V CEO Edition

NVIDIA TITAN V CEO Edition

Acerca del GPU

La GPU NVIDIA TITAN V CEO Edition es una verdadera bestia en cuanto a rendimiento y capacidades. Con sus enormes 32GB de memoria HBM2, 5120 unidades de sombreado y una velocidad de reloj base de 1200MHz (aumentando a 1455MHz), esta GPU está diseñada para manejar incluso las tareas y cargas de trabajo más exigentes con facilidad. La TITAN V CEO Edition es una GPU de plataforma de escritorio capaz de ofrecer un rendimiento teórico excepcional de 14.9 TFLOPS. Este nivel de rendimiento la hace ideal para casos de uso profesionales como ciencia de datos, IA, aprendizaje profundo y computación de alto rendimiento. La memoria caché L2 de 6MB y un TDP de 250W mejoran aún más sus capacidades computacionales y eficiencia. Además de su impresionante rendimiento, la TITAN V CEO Edition también cuenta con un diseño elegante y estilizado, demostrando el compromiso de NVIDIA con la funcionalidad y la estética. El esquema de colores negro y dorado de la GPU agrega un toque premium a su aspecto, convirtiéndola en una adición visualmente impactante a cualquier configuración de escritorio de gama alta. En general, la GPU NVIDIA TITAN V CEO Edition es una verdadera bestia de tarjeta gráfica que ofrece un rendimiento y capacidades incomparables, lo que la convierte en la opción principal para profesionales y entusiastas que requieren lo mejor en tecnología de GPU. Sin embargo, el alto precio y los requisitos de energía pueden hacer que sea menos accesible para el consumidor promedio.

Básico

Nombre de Etiqueta
NVIDIA
Plataforma
Desktop
Fecha de Lanzamiento
June 2018
Nombre del modelo
TITAN V CEO Edition
Generación
GeForce 10
Reloj base
1200MHz
Reloj de impulso
1455MHz
Interfaz de bus
PCIe 3.0 x16

Especificaciones de Memoria

Tamaño de memoria
32GB
Tipo de memoria
HBM2
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
4096bit
Reloj de memoria
848MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
868.4 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
186.2 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
465.6 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
29.80 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
7.450 TFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
14.602 TFLOPS

Misceláneos

Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
80
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
5120
Caché L1
128 KB (per SM)
Caché L2
6MB
TDP
250W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0

Clasificaciones

FP32 (flotante)
Puntaje
14.602 TFLOPS
OctaneBench
Puntaje
319

Comparado con Otras GPU

FP32 (flotante) / TFLOPS
14.668 +0.5%
14.602 -0%
14.596 -0%