NVIDIA H100 PCIe

NVIDIA H100 PCIe

Über GPU

Die NVIDIA H100 PCIe GPU ist eine leistungsstarke professionelle Grafikkarte, die eine beeindruckende Reihe von Spezifikationen bietet. Mit einer Basisuhr von 1095 MHz und einer Boost-Uhr von 1755 MHz liefert diese GPU außergewöhnliche Leistung für anspruchsvolle professionelle Workloads. Die 80GB HBM2e-Speicher und eine Speichertaktung von 1593MHz stellen sicher, dass selbst die speicherintensivsten Aufgaben mühelos bewältigt werden können. Die 14592 Shading-Einheiten und 50MB L2-Cache machen diese GPU gut geeignet für komplexe Rendering- und Simulationstasks. Eine der herausragenden Eigenschaften der NVIDIA H100 PCIe GPU ist ihre beeindruckende theoretische Leistung von 51,22 TFLOPS, die ihre Fähigkeit zeigt, leistungsintensive Rechenlasten zu bewältigen. Dies macht sie zu einer ausgezeichneten Wahl für Fachleute in Bereichen wie Datenwissenschaft, Ingenieurwesen und Content-Erstellung. In Bezug auf den Stromverbrauch hat die H100 PCIe GPU eine TDP von 350W, was am oberen Ende liegt, aber die gebotene Leistung rechtfertigt den Stromverbrauch. Darüber hinaus ist diese GPU für den Einsatz in professionellen Workstations mit ausreichender Kühlung und Stromversorgung konzipiert. Insgesamt ist die NVIDIA H100 PCIe GPU eine erstklassige Option für Fachleute, die eine leistungsstarke Grafiklösung benötigen. Ihre beeindruckenden Spezifikationen, einschließlich ihrer großen Speicherkapazität, der hohen Kernanzahl und ihrer außergewöhnlichen theoretischen Leistung, machen sie gut geeignet für intensive professionelle Workloads. Egal, ob Sie an komplexen Simulationen arbeiten, große Datensätze rendern oder andere anspruchsvolle Aufgaben bewältigen, die NVIDIA H100 PCIe GPU ist eine zuverlässige und leistungsstarke Wahl.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
March 2022
Modellname
H100 PCIe
Generation
Tesla Hopper
Basis-Takt
1095MHz
Boost-Takt
1755MHz
Bus-Schnittstelle
PCIe 5.0 x16
Transistoren
80,000 million
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
456
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
456
Foundry
TSMC
Prozessgröße
4 nm
Architektur
Hopper

Speicherspezifikationen

Speichergröße
80GB
Speichertyp
HBM2e
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
5120bit
Speichertakt
1593MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
2039 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
42.12 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
800.3 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
204.9 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
25.61 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
52.244 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
114
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
14592
L1-Cache
256 KB (per SM)
L2-Cache
50MB
TDP (Thermal Design Power)
350W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
N/A
OpenCL-Version
3.0
OpenGL
N/A
DirectX
N/A
CUDA
9.0
Stromanschlüsse
1x 16-pin
Shader-Modell
N/A
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
24
Empfohlene PSU (Stromversorgung)
750W

Benchmarks

FP32 (float)
Punktzahl
52.244 TFLOPS
Blender
Punktzahl
5111
OpenCL
Punktzahl
267514

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
70.374 +34.7%
62.648 +19.9%
52.244
46.913 -10.2%
Blender
15026.3 +194%
5111
1917 -62.5%
974 -80.9%
497.75 -90.3%
OpenCL
368974 +37.9%
267514
97694 -63.5%
69143 -74.2%
48080 -82%