NVIDIA A100 SXM4 80 GB

NVIDIA A100 SXM4 80 GB

GPUについて

NVIDIA A100 SXM4 80 GB GPUは、データセンターやスーパーコンピューティング環境でのプロフェッショナル向けに設計された、グラフィックス処理ユニットの強力なモデルです。基本クロック速度は1275MHz、ブーストクロック速度は1410MHzで、幅広い要求されるワークロードに対して印象的な性能を提供しています。 A100 SXM4の特筆すべき特徴の1つは、80GBのHBM2eメモリであり、大規模なデータ処理や機械学習タスクに非常に有益です。1593MHzの高いメモリクロック速度により、データに素早くアクセスして処理することができるため、全体的な効率と生産性に貢献します。 6912のシェーディングユニットと40MBのL2キャッシュを備えたA100 SXM4は、複雑で計算負荷の高いワークロードを容易に処理することができます。その400WのTDPは、他の一部のGPUよりも高いかもしれませんが、それは提供される性能と機能に対する必要なトレードオフです。 19.49 TFLOPSの理論的な性能はさらに、A100 SXM4が要求される計算タスクに対応する潜在能力を示しており、AIトレーニング、推論、その他のディープラーニングアプリケーションに最適な選択肢です。 総じて、NVIDIA A100 SXM4 80 GB GPUは、高性能なコンピューティング能力を求めるプロフェッショナルや組織にとっての最高峰のソリューションです。その印象的な仕様と機能はさまざまな高度なワークロードに適しており、どんなデータセンターやスーパーコンピューティング環境にも有益な追加となります。

基本

レーベル名
NVIDIA
プラットホーム
Professional
発売日
November 2020
モデル名
A100 SXM4 80 GB
世代
Ampere
ベースクロック
1275MHz
ブーストクロック
1410MHz
バスインターフェース
PCIe 4.0 x16
トランジスタ
54,200 million
テンソルコア
?
テンソルコアは深層学習専用に設計された特化型プロセッサで、FP32トレーニングと比較して高いトレーニングと推論性能を提供します。コンピュータビジョン、自然言語処理、音声認識、テキストから音声への変換、個別の推奨などの領域で迅速な計算を可能にします。テンソルコアの最も注目すべき応用は、DLSS(Deep Learning Super Sampling)とAI Denoiserのノイズリダクションです。
432
TMU
?
テクスチャマッピングユニット(TMUs)は、二進画像を回転、スケーリング、歪曲して、それを3Dモデルの任意の平面にテクスチャとして配置することができるGPUのコンポーネントです。このプロセスはテクスチャマッピングと呼ばれます。
432
ファウンドリ
TSMC
プロセスサイズ
7 nm
アーキテクチャ
Ampere

メモリ仕様

メモリサイズ
80GB
メモリタイプ
HBM2e
メモリバス
?
メモリバス幅とは、1クロックサイクル内にビデオメモリが転送できるデータのビット数を指します。バス幅が大きいほど、一度に転送できるデータ量が多くなります。メモリバンド幅の計算式は次の通りです:メモリバンド幅 = メモリ周波数 x メモリバス幅 / 8。
5120bit
メモリクロック
1593MHz
帯域幅
?
メモリバンド幅は、グラフィックチップとビデオメモリ間のデータ転送速度を指します。単位はバイト/秒で、計算式は次の通りです:メモリバンド幅 = 動作周波数 × メモリバス幅 / 8ビット。
2039 GB/s

理論上の性能

ピクセルレート
?
ピクセル塗りつぶし率は、グラフィックスプロセッシングユニット(GPU)が1秒あたりにレンダリングできるピクセル数を指します。これは、MPixels/s(百万ピクセル/秒)またはGPixels/s(十億ピクセル/秒)で測定されます。これはグラフィックスカードのピクセル処理性能を評価するために最も一般的に使用される指標です。
225.6 GPixel/s
テクスチャレート
?
テクスチャ塗りつぶし率は、GPUが1秒間にピクセルにマッピングできるテクスチャマップ要素(テクセル)の数を指します。
609.1 GTexel/s
FP16 (半精度)
?
GPUパフォーマンスを測定する重要な指標は浮動小数点計算能力です。半精度浮動小数点数(16ビット)は、精度が低くても許容可能な機械学習のようなアプリケーションで使用されます。単精度浮動小数点数(32ビット)は、一般的なマルチメディアやグラフィックス処理のタスクで使用され、倍精度浮動小数点数(64ビット)は、広範で高精度が求められる科学計算に必要です。
77.97 TFLOPS
FP64 (倍精度)
?
GPUパフォーマンスを測定する重要な指標は浮動小数点計算能力です。倍精度浮動小数点数(64ビット)は、広範で高精度が求められる科学計算に必要です。単精度浮動小数点数(32ビット)は、一般的なマルチメディアやグラフィックス処理のタスクで使用されます。半精度浮動小数点数(16ビット)は、精度が低くても許容可能な機械学習のようなアプリケーションで使用されます。
9.746 TFLOPS
FP32 (浮動小数点)
?
GPU のパフォーマンスを測定するための重要な指標は、浮動小数点コンピューティング能力です。 単精度浮動小数点数 (32 ビット) は一般的なマルチメディアおよびグラフィックス処理タスクに使用されますが、倍精度浮動小数点数 (64 ビット) は広い数値範囲と高精度が要求される科学計算に必要です。 半精度浮動小数点数 (16 ビット) は、精度が低くても許容される機械学習などのアプリケーションに使用されます。
19.1 TFLOPS

その他

SM数
?
ストリーミングプロセッサ(SP)は他のリソースとともに、ストリーミングマルチプロセッサ(SM)を形成し、これはGPUの主要コアとも呼ばれます。これらの追加リソースには、ワープスケジューラ、レジスタ、共有メモリなどのコンポーネントが含まれます。SMは、レジスタや共有メモリが希少なリソースであるGPUの中心部と考えることができます。
108
シェーディングユニット
?
最も基本的な処理単位はストリーミングプロセッサ(SP)で、特定の指示とタスクが実行されます。GPUは並行計算を行い、複数のSPが同時にタスクを処理します。
6912
L1キャッシュ
192 KB (per SM)
L2キャッシュ
40MB
TDP
400W
Vulkanのバージョン
?
Vulkanは、Khronos Groupによるクロスプラットフォームのグラフィックスおよび計算APIで、高性能と低CPU負荷を提供します。開発者がGPUを直接制御し、レンダリングのオーバーヘッドを減らし、マルチスレッドとマルチコアプロセッサをサポートします。
N/A
OpenCLのバージョン
3.0
OpenGL
N/A
DirectX
N/A
CUDA
8.0
電源コネクタ
None
シェーダモデル
N/A
ROP
?
ラスタオペレーションパイプライン(ROPs)は、ゲーム内の照明や反射計算を主に取り扱い、アンチエイリアシング(AA)、高解像度、煙、火などの効果を管理します。ゲームのAAと照明効果が高いほど、ROPsの性能要求が高くなります。
160
推奨PSU
800W

ベンチマーク

FP32 (浮動小数点)
スコア
19.1 TFLOPS
OctaneBench
スコア
526

他のGPUとの比較

FP32 (浮動小数点) / TFLOPS
20.053 +5%
18.176 -4.8%
16.636 -12.9%
OctaneBench
1328 +152.5%
163 -69%
89 -83.1%
47 -91.1%