NVIDIA T600 Max-Q

NVIDIA T600 Max-Q

À propos du GPU

La carte graphique NVIDIA T600 Max-Q est une plateforme graphique mobile qui offre des performances impressionnantes dans un package compact et économe en énergie. Avec une vitesse d'horloge de base de 930 MHz et une vitesse d'horloge de boost de 1395 MHz, cette carte graphique offre un gameplay fluide et réactif, ainsi que des capacités de création de contenu rapides et efficaces. Le T600 Max-Q est équipé de 4 Go de mémoire GDDR6, offrant une capacité suffisante pour les textures haute résolution et les transferts de données rapides. L'horloge mémoire de 1250 MHz assure un accès rapide aux données, tandis que les 896 unités de traitement et le cache L2 de 1024 Ko offrent un excellent traitement parallèle et une gestion efficace des charges de travail. L'une des caractéristiques remarquables du T600 Max-Q est sa faible consommation de 40W (Thermal Design Power), ce qui permet des performances élevées tout en maintenant une faible consommation d'énergie et une réduction de la chaleur. Cela en fait un choix idéal pour les ordinateurs portables fins et légers et les stations de travail portables, où l'efficacité énergétique et la gestion thermique sont des considérations cruciales. Avec une performance théorique de 2,5 TFLOPS, le T600 Max-Q est plus que capable de gérer les jeux modernes et les applications professionnelles exigeantes. Il offre un équilibre entre performance et efficacité énergétique, ce qui en fait un excellent choix pour les utilisateurs ayant besoin d'une carte graphique performante dans un format portable. Dans l'ensemble, la carte graphique NVIDIA T600 Max-Q est une option convaincante pour ceux qui recherchent des performances graphiques élevées dans un package mobile et économe en énergie. Sa combinaison de performances, d'efficacité énergétique et de design compact en fait un choix polyvalent pour une gamme de besoins en informatique portable.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Mobile
Date de lancement
April 2021
Nom du modèle
T600 Max-Q
Génération
Quadro Turing-M
Horloge de base
930MHz
Horloge Boost
1395MHz
Interface de bus
PCIe 3.0 x16

Spécifications de la mémoire

Taille de Mémoire
4GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1250MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
160.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
44.64 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
78.12 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
5.000 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
78.12 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
2.45 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
14
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
896
Cache L1
64 KB (per SM)
Cache L2
1024KB
TDP
40W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
2.45 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
2.481 +1.3%
2.467 +0.7%
2.45
2.446 -0.2%
2.446 -0.2%