NVIDIA Quadro P4000 Mobile

NVIDIA Quadro P4000 Mobile

À propos du GPU

La carte graphique NVIDIA Quadro P4000 Mobile GPU est une carte graphique de qualité professionnelle conçue pour des performances élevées dans des applications exigeantes telles que la modélisation 3D, la conception CAO et le montage vidéo. Avec ses 8 Go de mémoire GDDR5 et 1792 unités d'ombrage, cette carte graphique est suffisamment puissante pour gérer des tâches complexes et des charges de travail importantes. La vitesse d'horloge de la mémoire de 1502 MHz et une mémoire cache L2 de 2 Mo contribuent à l'efficacité globale de la carte graphique, permettant un traitement des données et un rendu plus rapides. De plus, le Quadro P4000 affiche une TDP de 100 W, ce qui le rend adapté aux stations de travail mobiles sans compromettre la consommation d'énergie. Les performances théoriques de 4,398 TFLOPS démontrent la capacité de la carte graphique à offrir des graphismes de haute qualité et un rendu fluide en temps réel. Cela est crucial pour les professionnels qui dépendent de visualisations précises et détaillées pour leurs projets. En fin de compte, la NVIDIA Quadro P4000 Mobile GPU offre un équilibre entre puissance et efficacité, ce qui en fait un choix fiable pour les professionnels travaillant dans des domaines tels que l'architecture, l'ingénierie et la création de contenu. Ses spécifications robustes et ses performances en font un choix idéal pour ceux qui ont besoin d'une carte graphique haut de gamme pour leurs charges de travail exigeantes. En conclusion, la NVIDIA Quadro P4000 Mobile GPU est une option solide pour les professionnels à la recherche d'une carte graphique puissante et fiable pour leurs stations de travail mobiles. Ses spécifications impressionnantes et ses performances en font un investissement précieux pour ceux ayant besoin de capacités graphiques de premier ordre.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
January 2017
Nom du modèle
Quadro P4000 Mobile
Génération
Quadro Mobile
Interface de bus
MXM-B (3.0)

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
1502MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
192.3 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
78.53 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
137.4 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
68.71 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
137.4 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
4.31 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
14
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1792
Cache L1
48 KB (per SM)
Cache L2
2MB
TDP
100W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
4.31 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
4.306 -0.1%
4.303 -0.2%