NVIDIA GeForce RTX 3050 Max-Q Refresh

NVIDIA GeForce RTX 3050 Max-Q Refresh

À propos du GPU

La NVIDIA GeForce RTX 3050 Max-Q Refresh GPU est une unité de traitement graphique mobile hautement performante et efficace qui offre une excellente combinaison de performance et d'efficacité énergétique. Avec une vitesse d'horloge de base de 622 MHz et une vitesse d'horloge en mode boost de 990 MHz, cette GPU offre une expérience de jeu fluide et réactive ainsi qu'une prise en charge efficace des tâches graphiques intensives. Les 6 Go de mémoire GDDR6 avec une horloge mémoire de 1500 MHz garantissent un accès rapide aux textures et aux ressources, ce qui se traduit par une expérience visuelle fluide. Avec 2048 unités de traitement et 2 Mo de cache L2, la RTX 3050 Max-Q Refresh GPU offre une qualité d'image impressionnante et des capacités de rendu. La TDP (Thermal Design Power) de 75 W garantit que la GPU fonctionne dans une plage de consommation d'énergie raisonnable, ce qui en fait un choix idéal pour une utilisation dans des ordinateurs portables fins et légers sans compromettre les performances. Les performances théoriques de 4,055 TFLOPS mettent en valeur la capacité de la GPU à gérer facilement les jeux modernes et les charges de travail créatives. Que ce soit pour les jeux, l'édition de photos et de vidéos ou le rendu 3D, la RTX 3050 Max-Q Refresh GPU offre une expérience fluide et efficace. Dans l'ensemble, la NVIDIA GeForce RTX 3050 Max-Q Refresh GPU est un choix solide pour les utilisateurs à la recherche d'une solution graphique mobile fiable et efficace. Elle offre un bon équilibre entre performance et efficacité énergétique, ce qui en fait une excellente option pour les ordinateurs portables destinés tant aux joueurs qu'aux professionnels de la création.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Mobile
Date de lancement
July 2022
Nom du modèle
GeForce RTX 3050 Max-Q Refresh
Génération
GeForce 30 Mobile
Horloge de base
622MHz
Horloge Boost
990MHz
Interface de bus
PCIe 4.0 x8

Spécifications de la mémoire

Taille de Mémoire
6GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
96bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
144.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
31.68 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
63.36 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
4.055 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
63.36 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
4.136 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
16
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2048
Cache L1
128 KB (per SM)
Cache L2
2MB
TDP
75W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
4.136 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
4.15 +0.3%
4.14 +0.1%
4.135 -0%
4.114 -0.5%