AMD Radeon RX 460 Mobile
À propos du GPU
La carte graphique AMD Radeon RX 460 Mobile est un choix solide pour les joueurs soucieux de leur budget et les utilisateurs occasionnels à la recherche d'une solution graphique fiable et efficace. Avec une fréquence de base de 1000MHz et une fréquence de boost de 1180MHz, cette carte graphique offre des performances respectables pour sa catégorie. Les 4 Go de mémoire GDDR5 avec une fréquence de mémoire de 1250MHz assurent un gameplay fluide et réactif, même à des résolutions plus élevées.
Doté de 896 unités de shader et d'un cache L2 de 1024KB, le RX 460 est capable de gérer les jeux modernes et les tâches multimédias avec facilité. La consommation électrique de 55W en fait une option économe en énergie pour les ordinateurs portables et autres appareils mobiles.
En termes de performances, la carte graphique AMD Radeon RX 460 Mobile offre une performance théorique de 2,115 TFLOPS, ce qui la rend adaptée au jeu en 1080p à des paramètres moyens à élevés. Bien qu'elle ne soit pas la carte graphique la plus puissante du marché, elle offre certainement un rapport performances/prix convaincant.
De plus, son format compact et son efficacité énergétique en font une option attrayante pour les ordinateurs portables fins et légers ou les mini-PC. En fin de compte, la carte graphique AMD Radeon RX 460 Mobile offre une combinaison équilibrée de performances, d'efficacité énergétique et d'accessibilité, ce qui en fait une option valable pour les joueurs soucieux de leur budget et les utilisateurs à la recherche de performances graphiques solides pour leurs appareils mobiles.
Basique
Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
August 2016
Nom du modèle
Radeon RX 460 Mobile
Génération
Mobility Radeon
Horloge de base
1000MHz
Horloge Boost
1180MHz
Interface de bus
MXM-B (3.0)
Transistors
3,000 million
Unités de calcul
14
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
56
Fonderie
GlobalFoundries
Taille de processus
14 nm
Architecture
GCN 4.0
Spécifications de la mémoire
Taille de Mémoire
4GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1250MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
80.00 GB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
18.88 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
66.08 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
2.115 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
132.2 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
2.157
TFLOPS
Divers
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
896
Cache L1
16 KB (per CU)
Cache L2
1024KB
TDP
55W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.2
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_0)
Connecteurs d'alimentation
None
Modèle de shader
6.4
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
16
Benchmarks
FP32 (flottant)
Score
2.157
TFLOPS
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS