AMD Radeon R9 M385X
À propos du GPU
La carte graphique AMD Radeon R9 M385X est une carte graphique mobile qui offre des performances impressionnantes et une efficacité énergétique pour les jeux et les tâches multimédias. Avec une vitesse d'horloge de base de 1000MHz et une vitesse d'horloge boostée de 1100MHz, cette carte graphique offre un rendu graphique fluide et réactif. Les 4 Go de mémoire GDDR5 et une horloge mémoire de 1200MHz garantissent que la carte graphique peut gérer facilement les jeux et les applications exigeants.
Avec 896 unités de traitement et 256KB de cache L2, le R9 M385X est capable de gérer des calculs graphiques complexes et des tâches de rendu. La performance théorique de 1,971 TFLOPS démontre encore davantage la capacité de la carte graphique à gérer des charges de travail intensives.
Dans une utilisation réelle, le R9 M385X offre d'excellentes performances dans les jeux modernes, permettant un gameplay fluide à haute résolution et avec des paramètres détaillés. L'efficacité énergétique de la carte graphique est également admirable, garantissant qu'elle peut offrir des performances élevées sans surchauffe ni consommation excessive d'énergie.
Dans l'ensemble, la AMD Radeon R9 M385X est une carte graphique mobile performante, offrant de solides performances pour les jeux et les tâches multimédias. Sa combinaison d'une large bande passante mémoire, d'une taille de mémoire généreuse et d'une architecture efficace en fait un choix solide pour ceux à la recherche d'une solution graphique mobile puissante. Que ce soit pour les jeux ou la création de contenu, le R9 M385X est une carte graphique capable de gérer les charges de travail exigeantes avec facilité.
Basique
Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
May 2015
Nom du modèle
Radeon R9 M385X
Génération
Gem System
Horloge de base
1000MHz
Horloge Boost
1100MHz
Interface de bus
PCIe 3.0 x16
Transistors
2,080 million
Unités de calcul
14
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
56
Fonderie
TSMC
Taille de processus
28 nm
Architecture
GCN 2.0
Spécifications de la mémoire
Taille de Mémoire
4GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1200MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
76.80 GB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
17.60 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
61.60 GTexel/s
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
123.2 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
1.932
TFLOPS
Divers
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
896
Cache L1
16 KB (per CU)
Cache L2
256KB
TDP
Unknown
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.2.170
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_0)
Modèle de shader
6.5
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
16
Benchmarks
FP32 (flottant)
Score
1.932
TFLOPS
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS