AMD Radeon HD 6970M

AMD Radeon HD 6970M

À propos du GPU

Le GPU AMD Radeon HD 6970M est un choix solide pour ceux qui recherchent une solution graphique mobile haute performance. Avec une taille de mémoire de 1024 Mo et un type de mémoire GDDR5, il offre des performances mémoire rapides et efficaces. L'horloge mémoire de 900 MHz garantit un rendu graphique fluide et réactif, le rendant adapté aux jeux, à la création de contenu et à d'autres tâches intensives en graphisme. Le GPU dispose de 960 unités de shading, ce qui permet des effets visuels complexes et détaillés. De plus, le cache L2 de 512 Ko contribue à réduire la latence mémoire, améliorant ainsi les performances globales. Avec 75W de TDP, ce GPU offre un bon équilibre entre efficacité énergétique et performances, le rendant adapté à un large éventail d'ordinateurs portables et de stations de travail mobiles. En termes de puissance de traitement brute, l'AMD Radeon HD 6970M offre une performance théorique de 1,306 TFLOPS, ce qui le rend capable de gérer facilement des charges de travail graphiques exigeantes. Que vous soyez un joueur, un créateur de contenu ou un professionnel ayant besoin de performances graphiques fiables en déplacement, ce GPU a le potentiel de répondre à vos besoins. Dans l'ensemble, le GPU AMD Radeon HD 6970M offre une combinaison convaincante de performances, d'efficacité énergétique et de capacités mémoire. C'est une option polyvalente pour ceux qui ont besoin d'une solution graphique mobile haute performance, et elle est bien adaptée à une variété d'applications.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
January 2011
Nom du modèle
Radeon HD 6970M
Génération
Vancouver
Interface de bus
MXM-B (3.0)
Transistors
1,700 million
Unités de calcul
12
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
48
Fonderie
TSMC
Taille de processus
40 nm
Architecture
TeraScale 2

Spécifications de la mémoire

Taille de Mémoire
1024MB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
900MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
115.2 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
21.76 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
32.64 GTexel/s
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
1.28 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
960
Cache L1
8 KB (per CU)
Cache L2
512KB
TDP
75W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
N/A
Version OpenCL
1.2
OpenGL
4.4
DirectX
11.2 (11_0)
Connecteurs d'alimentation
None
Modèle de shader
5.0
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32

Benchmarks

FP32 (flottant)
Score
1.28 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
1.325 +3.5%
1.254 -2%
1.235 -3.5%