AMD Radeon 550X Mobile

AMD Radeon 550X Mobile

À propos du GPU

La GPU mobile AMD Radeon 550X offre des performances impressionnantes et des fonctionnalités qui en font une excellente option tant pour le jeu que pour la productivité sur les appareils mobiles. Avec une fréquence de base de 1100 MHz et une fréquence d'horloge boost de 1287 MHz, cette GPU offre des performances rapides et fiables pour une variété de tâches. La taille de mémoire de 4 Go GDDR5 et une fréquence de mémoire de 1500 MHz garantissent que la GPU peut gérer des graphiques intensifs et le multitâche sans aucun temps mort ou ralentissement. Les 640 unités d'ombrage et le cache L2 de 256 Ko contribuent également à ses performances globales, en faisant une option polyvalente et puissante pour des applications exigeantes. Avec une TDP de 50W, la GPU mobile AMD Radeon 550X trouve un bon équilibre entre les performances et l'efficacité énergétique, permettant une autonomie de batterie plus longue sans sacrifier les capacités graphiques. La performance théorique de 1,647 TFLOPS démontre en outre la capacité de la GPU à gérer même les tâches graphiques les plus exigeantes avec facilité. Dans l'ensemble, la GPU mobile AMD Radeon 550X est un choix solide pour toute personne ayant besoin d'une solution graphique haute performance pour son appareil mobile. Que vous soyez un joueur, un créateur de contenu ou un professionnel ayant besoin de performances graphiques fiables en déplacement, cette GPU offre des résultats impressionnants dans tous les domaines. Sa combinaison de vitesse, de mémoire et d'efficacité énergétique en fait une option de premier plan sur le marché des GPU mobiles.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
April 2018
Nom du modèle
Radeon 550X Mobile
Génération
Mobility Radeon
Horloge de base
1100MHz
Horloge Boost
1287MHz
Interface de bus
PCIe 3.0 x8
Transistors
2,200 million
Unités de calcul
10
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
40
Fonderie
GlobalFoundries
Taille de processus
14 nm
Architecture
GCN 4.0

Spécifications de la mémoire

Taille de Mémoire
4GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
48.00 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
20.59 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
51.48 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
1.647 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
103.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
1.68 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
640
Cache L1
16 KB (per CU)
Cache L2
256KB
TDP
50W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.2
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_0)
Connecteurs d'alimentation
None
Modèle de shader
6.4
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
16

Benchmarks

FP32 (flottant)
Score
1.68 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
1.819 +8.3%
1.756 +4.5%
1.631 -2.9%
1.581 -5.9%