AMD Radeon RX Vega M GL
Acerca del GPU
El AMD Radeon RX Vega M GL es una GPU sólida para plataformas móviles, que ofrece un rendimiento impresionante y eficiencia energética. Con una velocidad de reloj base de 931MHz y una velocidad de impulso de 1011MHz, esta GPU proporciona representación gráfica rápida y suave para una variedad de tareas, desde juegos hasta creación de contenido.
La inclusión de 4GB de memoria HBM2 con una velocidad de reloj de 700MHz asegura que la GPU pueda manejar cargas de trabajo exigentes con facilidad, ofreciendo un rendimiento general excelente y reduciendo la probabilidad de cuellos de botella durante la operación. Las 1280 unidades de sombreado y 1024KB de memoria caché L2 contribuyen aún más a la capacidad de la GPU para manejar tareas de procesamiento de gráficos complejos de manera eficiente.
Una de las características destacadas del AMD Radeon RX Vega M GL es su eficiencia energética, con un TDP de solo 65W. Esto permite que la GPU se utilice en dispositivos móviles más delgados y ligeros sin sacrificar el rendimiento, lo que la convierte en una excelente opción para laptops para juegos y estaciones de trabajo portátiles.
Con un rendimiento teórico de 2.588 TFLOPS, el AMD Radeon RX Vega M GL está bien equipado para manejar juegos modernos y aplicaciones gráficas exigentes, brindando a los usuarios una GPU confiable y capaz para sus necesidades informáticas móviles.
En general, el AMD Radeon RX Vega M GL es una GPU móvil de primera categoría que ofrece un rendimiento, eficiencia energética y confiabilidad impresionantes, lo que la convierte en una excelente opción para usuarios que requieren un rendimiento gráfico de alta calidad sobre la marcha.
Básico
Nombre de Etiqueta
AMD
Plataforma
Mobile
Fecha de Lanzamiento
February 2018
Nombre del modelo
Radeon RX Vega M GL
Generación
Vega
Reloj base
931MHz
Reloj de impulso
1011MHz
Interfaz de bus
IGP
Transistores
5,000 million
Unidades de cálculo
20
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
80
Fundición
GlobalFoundries
Tamaño proceso
14 nm
Arquitectura
GCN 4.0
Especificaciones de Memoria
Tamaño de memoria
4GB
Tipo de memoria
HBM2
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
1024bit
Reloj de memoria
700MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
179.2 GB/s
Rendimiento teórico
Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
32.35 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
80.88 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
2.588 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
161.8 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
2.536
TFLOPS
Misceláneos
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
1280
Caché L1
16 KB (per CU)
Caché L2
1024KB
TDP
65W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.2
OpenCL Versión
2.1
OpenGL
4.6
DirectX
12 (12_0)
Modelo de sombreado
6.4
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
32
Clasificaciones
FP32 (flotante)
Puntaje
2.536
TFLOPS
Comparado con Otras GPU
FP32 (flotante)
/ TFLOPS