NVIDIA Quadro P5000 Mobile

NVIDIA Quadro P5000 Mobile

About GPU

The NVIDIA Quadro P5000 Mobile GPU is a professional-grade graphics card designed for demanding and complex workloads such as 3D rendering, CAD design, and video editing. With a base clock of 1278MHz and a boost clock of 1582MHz, the P5000 delivers exceptional performance and responsiveness, making it suitable for a wide range of professional applications. One of the standout features of the Quadro P5000 is its large 16GB of GDDR5 memory, which allows for handling large and complex datasets with ease. The memory clock of 1502MHz ensures fast and efficient data transfer, further improving productivity for professional users. Additionally, the GPU is equipped with 2048 shading units and a 2MB L2 cache, resulting in smooth and consistent performance even when working on highly detailed and intricate projects. The P5000 boasts a TDP of 100W, making it power-efficient for a high-performance mobile GPU. This allows for longer battery life and less heat generation, crucial for professionals who require portability without sacrificing performance. Overall, the NVIDIA Quadro P5000 Mobile GPU offers exceptional computational power, excellent memory capacity, and power efficiency, making it an ideal choice for professionals who require top-notch performance for demanding workloads. Whether it's 3D modeling, rendering, simulation, or video editing, the P5000 is capable of handling it all with ease, making it a valuable asset for professionals in the creative and technical industries.

Basic

Label Name
NVIDIA
Platform
Professional
Launch Date
January 2017
Model Name
Quadro P5000 Mobile
Generation
Quadro Mobile
Base Clock
1278MHz
Boost Clock
1582MHz
Bus Interface
MXM-B (3.0)
Transistors
7,200 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
128
Foundry
TSMC
Process Size
16 nm
Architecture
Pascal

Memory Specifications

Memory Size
16GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1502MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.3 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
101.2 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
202.5 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
101.2 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
202.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
6.61 TFLOPS

Miscellaneous

SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
16
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
L1 Cache
48 KB (per SM)
L2 Cache
2MB
TDP
100W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Power Connectors
None
Shader Model
6.4
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64

Benchmarks

FP32 (float)
Score
6.61 TFLOPS
Blender
Score
526
OctaneBench
Score
117

Compared to Other GPU

FP32 (float) / TFLOPS
7.332 +10.9%
6.977 +5.6%
6.522 -1.3%
6.181 -6.5%
Blender
2020.49 +284.1%
1049 +99.4%
281.09 -46.6%
OctaneBench
418 +257.3%
229 +95.7%
62 -47%
33 -71.8%